Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Inhibitory effect of heparan sulfate-like glycosaminoglycans on the infectivity of Chlamydia pneumoniae in HL cells varies between strains.

Yan Y, Silvennoinen-Kassinen S, Leinonen M, Saikku P.

Microbes Infect. 2006 Mar;8(3):866-72. Epub 2006 Jan 17.

PMID:
16500132
2.

Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate.

Taraktchoglou M, Pacey AA, Turnbull JE, Eley A.

Infect Immun. 2001 Feb;69(2):968-76.

3.
4.
5.

Heparan sulfate-like glycosaminoglycan is a cellular receptor for Chlamydia pneumoniae.

Wuppermann FN, Hegemann JH, Jantos CA.

J Infect Dis. 2001 Jul 15;184(2):181-7. Epub 2001 Jun 5.

PMID:
11424015
6.

Comparative studies of glycosaminoglycan involvement in Chlamydia pneumoniae and C. trachomatis invasion of host cells.

Beswick EJ, Travelstead A, Cooper MD.

J Infect Dis. 2003 Apr 15;187(8):1291-300. Epub 2003 Apr 2.

PMID:
12696009
7.

Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39.

Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM.

Nucleic Acids Res. 2000 Mar 15;28(6):1397-406.

8.
9.
10.

Structural requirements of heparin binding to Chlamydia trachomatis.

Chen JC, Zhang JP, Stephens RS.

J Biol Chem. 1996 May 10;271(19):11134-40.

11.

Low iron availability modulates the course of Chlamydia pneumoniae infection.

Al-Younes HM, Rudel T, Brinkmann V, Szczepek AJ, Meyer TF.

Cell Microbiol. 2001 Jun;3(6):427-37.

PMID:
11422085
12.

In vitro inhibitory effects of tea polyphenols on the proliferation of Chlamydia trachomatis and Chlamydia pneumoniae.

Yamazaki T, Inoue M, Sasaki N, Hagiwara T, Kishimoto T, Shiga S, Ogawa M, Hara Y, Matsumoto T.

Jpn J Infect Dis. 2003 Aug;56(4):143-5.

13.

Inactivation of Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae by ozone.

Yamazaki T, Inoue M, Ogawa M, Shiga S, Kishimoto T, Hagiwara T, Matsumoto T, Hayashi T.

Lett Appl Microbiol. 2004;38(5):406-9.

14.

Mechanism of C. trachomatis attachment to eukaryotic host cells.

Zhang JP, Stephens RS.

Cell. 1992 May 29;69(5):861-9.

PMID:
1591780
16.

Characterization of in vitro chlamydial cultures in low-oxygen atmospheres.

Juul N, Jensen H, Hvid M, Christiansen G, Birkelund S.

J Bacteriol. 2007 Sep;189(18):6723-6. Epub 2007 Jul 13.

17.

Naturally occurring amino acids differentially influence the development of Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae.

Al-Younes HM, Gussmann J, Braun PR, Brinkmann V, Meyer TF.

J Med Microbiol. 2006 Jul;55(Pt 7):879-86.

PMID:
16772415
18.

Effects of chemically modified heparin on Chlamydia trachomatis serovar L2 infection of eukaryotic cells in culture.

Yabushita H, Noguchi Y, Habuchi H, Ashikari S, Nakabe K, Fujita M, Noguchi M, Esko JD, Kimata K.

Glycobiology. 2002 May;12(5):345-51.

PMID:
12070077
19.

Characterization of the interaction between the chlamydial adhesin OmcB and the human host cell.

Fechtner T, Stallmann S, Moelleken K, Meyer KL, Hegemann JH.

J Bacteriol. 2013 Dec;195(23):5323-33. doi: 10.1128/JB.00780-13. Epub 2013 Sep 20.

20.

Supplemental Content

Support Center