Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 222

1.

Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS.

Moser K, White FM.

J Proteome Res. 2006 Jan;5(1):98-104.

PMID:
16396499
2.

Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.

Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X.

J Proteome Res. 2008 Jun;7(6):2526-38. doi: 10.1021/pr700582z. Epub 2008 May 13.

PMID:
18473453
3.

Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.

Wu CJ, Chen YW, Tai JH, Chen SH.

J Proteome Res. 2011 Mar 4;10(3):1088-97. doi: 10.1021/pr100864b. Epub 2011 Feb 14.

PMID:
21210654
4.

Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation.

Yang F, Stenoien DL, Strittmatter EF, Wang J, Ding L, Lipton MS, Monroe ME, Nicora CD, Gristenko MA, Tang K, Fang R, Adkins JN, Camp DG 2nd, Chen DJ, Smith RD.

J Proteome Res. 2006 May;5(5):1252-60.

PMID:
16674116
5.

Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides.

Fedjaev M, Parmar A, Xu Y, Vyetrogon K, Difalco MR, Ashmarina M, Nifant'ev I, Posner BI, Pshezhetsky AV.

Mol Biosyst. 2012 Apr;8(5):1461-71. doi: 10.1039/c2mb05440j. Epub 2012 Feb 23.

PMID:
22362066
6.

Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.

Han G, Ye M, Liu H, Song C, Sun D, Wu Y, Jiang X, Chen R, Wang C, Wang L, Zou H.

Electrophoresis. 2010 Mar;31(6):1080-9. doi: 10.1002/elps.200900493.

PMID:
20166139
7.

Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics.

Wu X, Tian L, Li J, Zhang Y, Han V, Li Y, Xu X, Li H, Chen X, Chen J, Jin W, Xie Y, Han J, Zhong CQ.

Mol Cell Proteomics. 2012 Dec;11(12):1640-51. doi: 10.1074/mcp.M112.019091. Epub 2012 Aug 30.

8.

Phosphoproteomic analysis reveals site-specific changes in GFAP and NDRG2 phosphorylation in frontotemporal lobar degeneration.

Herskowitz JH, Seyfried NT, Duong DM, Xia Q, Rees HD, Gearing M, Peng J, Lah JJ, Levey AI.

J Proteome Res. 2010 Dec 3;9(12):6368-79. doi: 10.1021/pr100666c. Epub 2010 Oct 22.

9.

Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.

Kota U, Chien KY, Goshe MB.

Methods Mol Biol. 2009;564:303-21. doi: 10.1007/978-1-60761-157-8_17.

PMID:
19544030
10.

Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS.

Lee J, Xu Y, Chen Y, Sprung R, Kim SC, Xie S, Zhao Y.

Mol Cell Proteomics. 2007 Apr;6(4):669-76. Epub 2007 Jan 5.

11.

Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment.

Zhou H, Low TY, Hennrich ML, van der Toorn H, Schwend T, Zou H, Mohammed S, Heck AJ.

Mol Cell Proteomics. 2011 Oct;10(10):M110.006452. doi: 10.1074/mcp.M110.006452. Epub 2011 Jun 29. Erratum in: Mol Cell Proteomics. 2013 Sep;12(9):2673. Mohammed, Shabaz [added].

12.

Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis.

Kokubu M, Ishihama Y, Sato T, Nagasu T, Oda Y.

Anal Chem. 2005 Aug 15;77(16):5144-54.

PMID:
16097752
13.
14.

Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis.

Feng S, Pan C, Jiang X, Xu S, Zhou H, Ye M, Zou H.

Proteomics. 2007 Feb;7(3):351-60.

PMID:
17177250
15.

Organic-inorganic hybrid silica monolith based immobilized titanium ion affinity chromatography column for analysis of mitochondrial phosphoproteome.

Hou C, Ma J, Tao D, Shan Y, Liang Z, Zhang L, Zhang Y.

J Proteome Res. 2010 Aug 6;9(8):4093-101. doi: 10.1021/pr100294z.

PMID:
20568813
16.

Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor.

Zhou H, Elisma F, Denis NJ, Wright TG, Tian R, Zhou H, Hou W, Zou H, Figeys D.

J Proteome Res. 2010 Mar 5;9(3):1279-88. doi: 10.1021/pr900767j.

PMID:
20067319
17.

Characterization of phosphorylation sites on Tpl2 using IMAC enrichment and a linear ion trap mass spectrometer.

Black TM, Andrews CL, Kilili G, Ivan M, Tsichlis PN, Vouros P.

J Proteome Res. 2007 Jun;6(6):2269-76. Epub 2007 May 2.

PMID:
17472361
18.

Citrate boosts the performance of phosphopeptide analysis by UPLC-ESI-MS/MS.

Winter D, Seidler J, Ziv Y, Shiloh Y, Lehmann WD.

J Proteome Res. 2009 Jan;8(1):418-24. doi: 10.1021/pr800304n.

PMID:
19053530
19.

Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis.

Feng S, Ye M, Zhou H, Jiang X, Jiang X, Zou H, Gong B.

Mol Cell Proteomics. 2007 Sep;6(9):1656-65. Epub 2007 Jun 17.

20.

Phosphoproteome analysis of mouse liver using immobilized metal affinity purification and linear ion trap mass spectrometry.

Jin WH, Dai J, Zhou H, Xia QC, Zou HF, Zeng R.

Rapid Commun Mass Spectrom. 2004;18(18):2169-76.

PMID:
15378723

Supplemental Content

Support Center