Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 68

1.

House cleaning, a part of good housekeeping.

Galperin MY, Moroz OV, Wilson KS, Murzin AG.

Mol Microbiol. 2006 Jan;59(1):5-19.

2.

Structural and functional insights into DR2231 protein, the MazG-like nucleoside triphosphate pyrophosphohydrolase from Deinococcus radiodurans.

Gonçalves AM, de Sanctis D, McSweeney SM.

J Biol Chem. 2011 Sep 2;286(35):30691-705. doi: 10.1074/jbc.M111.247999. Epub 2011 Jul 6.

3.

Dimeric dUTPases, HisE, and MazG belong to a new superfamily of all-alpha NTP pyrophosphohydrolases with potential "house-cleaning" functions.

Moroz OV, Murzin AG, Makarova KS, Koonin EV, Wilson KS, Galperin MY.

J Mol Biol. 2005 Mar 25;347(2):243-55. Epub 2005 Jan 27.

PMID:
15740738
4.

Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.

Harris JM, McIntosh EM, Muscat GE.

J Mol Biol. 1999 Apr 30;288(2):275-87.

PMID:
10329142
5.

Crystal structure of Escherichia coli MazG, the regulator of nutritional stress response.

Lee S, Kim MH, Kang BS, Kim JS, Kim GH, Kim YG, Kim KJ.

J Biol Chem. 2008 May 30;283(22):15232-40. doi: 10.1074/jbc.M800479200. Epub 2008 Mar 18.

6.

Mycobacterial MazG is a novel NTP pyrophosphohydrolase involved in oxidative stress response.

Lu LD, Sun Q, Fan XY, Zhong Y, Yao YF, Zhao GP.

J Biol Chem. 2010 Sep 3;285(36):28076-85. doi: 10.1074/jbc.M109.088872. Epub 2010 Jun 7.

7.

A putative house-cleaning enzyme encoded within an integron array: 1.8 A crystal structure defines a new MazG subtype.

Robinson A, Guilfoyle AP, Harrop SJ, Boucher Y, Stokes HW, Curmi PM, Mabbutt BC.

Mol Microbiol. 2007 Nov;66(3):610-21. Epub 2007 Sep 24.

8.

Insights into substrate recognition by the Escherichia coli Orf135 protein through its solution structure.

Kawasaki K, Kanaba T, Yoneyama M, Murata-Kamiya N, Kojima C, Ito Y, Kamiya H, Mishima M.

Biochem Biophys Res Commun. 2012 Apr 6;420(2):263-8. doi: 10.1016/j.bbrc.2012.02.146. Epub 2012 Mar 5.

PMID:
22414689
9.

Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2.

Carter M, Jemth AS, Hagenkort A, Page BD, Gustafsson R, Griese JJ, Gad H, Valerie NC, Desroses M, Boström J, Warpman Berglund U, Helleday T, Stenmark P.

Nat Commun. 2015 Aug 4;6:7871. doi: 10.1038/ncomms8871.

10.

The nuts and bolts of ring-translocase structure and mechanism.

Lyubimov AY, Strycharska M, Berger JM.

Curr Opin Struct Biol. 2011 Apr;21(2):240-8. doi: 10.1016/j.sbi.2011.01.002. Epub 2011 Feb 1. Review.

11.

Molecular basis of the antimutagenic activity of the house-cleaning inosine triphosphate pyrophosphatase RdgB from Escherichia coli.

Savchenko A, Proudfoot M, Skarina T, Singer A, Litvinova O, Sanishvili R, Brown G, Chirgadze N, Yakunin AF.

J Mol Biol. 2007 Dec 7;374(4):1091-103. Epub 2007 Oct 11.

PMID:
17976651
12.

Programmed cell death triggered by nucleotide pool damage and its prevention by MutT homolog-1 (MTH1) with oxidized purine nucleoside triphosphatase.

Nakabeppu Y, Oka S, Sheng Z, Tsuchimoto D, Sakumi K.

Mutat Res. 2010 Nov 28;703(1):51-8. doi: 10.1016/j.mrgentox.2010.06.006. Epub 2010 Jun 11. Review.

PMID:
20542142
13.

Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family.

Nguyen VN, Park A, Xu A, Srouji JR, Brenner SE, Kirsch JF.

Proteins. 2016 Dec;84(12):1810-1822. doi: 10.1002/prot.25163. Epub 2016 Oct 1.

14.

Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases.

Vértessy BG, Tóth J.

Acc Chem Res. 2009 Jan 20;42(1):97-106. doi: 10.1021/ar800114w.

15.

Biochemical and structural studies of conserved Maf proteins revealed nucleotide pyrophosphatases with a preference for modified nucleotides.

Tchigvintsev A, Tchigvintsev D, Flick R, Popovic A, Dong A, Xu X, Brown G, Lu W, Wu H, Cui H, Dombrowski L, Joo JC, Beloglazova N, Min J, Savchenko A, Caudy AA, Rabinowitz JD, Murzin AG, Yakunin AF.

Chem Biol. 2013 Nov 21;20(11):1386-98. doi: 10.1016/j.chembiol.2013.09.011. Epub 2013 Oct 24.

16.

Quantitative in vitro and in vivo characterization of the human P32T mutant ITPase.

Herting G, Barber K, Zappala MR, Cunningham RP, Burgis NE.

Biochim Biophys Acta. 2010 Feb;1802(2):269-74. doi: 10.1016/j.bbadis.2009.11.002. Epub 2009 Nov 13.

17.

Concerted bifunctionality of the dCTP deaminase-dUTPase from Methanocaldococcus jannaschii: a structural and pre-steady state kinetic analysis.

Siggaard JH, Johansson E, Vognsen T, Helt SS, Harris P, Larsen S, Willemoës M.

Arch Biochem Biophys. 2009 Oct 1;490(1):42-9. doi: 10.1016/j.abb.2009.08.005. Epub 2009 Aug 14.

PMID:
19683509
18.

Analysis of human ITPase nucleobase specificity by site-directed mutagenesis.

Gall AD, Gall A, Moore AC, Aune MK, Heid S, Mori A, Burgis NE.

Biochimie. 2013 Sep;95(9):1711-21. doi: 10.1016/j.biochi.2013.05.016. Epub 2013 Jun 14.

PMID:
23770441
19.

Kinetic properties and specificity of trimeric Plasmodium falciparum and human dUTPases.

Quesada-Soriano I, Casas-Solvas JM, Recio E, Ruiz-Pérez LM, Vargas-Berenguel A, González-Pacanowska D, García-Fuentes L.

Biochimie. 2010 Feb;92(2):178-86. doi: 10.1016/j.biochi.2009.10.008. Epub 2009 Oct 29.

PMID:
19879316
20.

A continuous fluorescence assay for the characterization of Nudix hydrolases.

Xu A, Desai AM, Brenner SE, Kirsch JF.

Anal Biochem. 2013 Jun 15;437(2):178-84. doi: 10.1016/j.ab.2013.02.023. Epub 2013 Mar 7.

Supplemental Content

Support Center