Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 64

1.

Reduction of Chromate by Desulfovibrio vulgaris and Its c(3) Cytochrome.

Lovley DR, Phillips EJ.

Appl Environ Microbiol. 1994 Feb;60(2):726-8.

2.

Reduction of Cr(VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776.

Humphries AC, Nott KP, Hall LD, Macaskie LE.

Biotechnol Bioeng. 2005 Jun 5;90(5):589-96.

PMID:
15818565
3.

Chromate reduction by immobilized palladized sulfate-reducing bacteria.

Humphries AC, Mikheenko IP, Macaskie LE.

Biotechnol Bioeng. 2006 May 5;94(1):81-90.

PMID:
16570313
4.

Hydrogenases in sulfate-reducing bacteria function as chromium reductase.

Chardin B, Giudici-Orticoni MT, De Luca G, Guigliarelli B, Bruschi M.

Appl Microbiol Biotechnol. 2003 Dec;63(3):315-21. Epub 2003 Jul 12.

PMID:
12861426
5.

Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth.

Klonowska A, Clark ME, Thieman SB, Giles BJ, Wall JD, Fields MW.

Appl Microbiol Biotechnol. 2008 Apr;78(6):1007-16. doi: 10.1007/s00253-008-1381-x. Epub 2008 Feb 12.

PMID:
18265973
6.

Effect of complexing agents on reduction of Cr(VI) by Desulfovibrio vulgaris ATCC 29579.

Mabbett AN, Lloyd JR, Macaskie LE.

Biotechnol Bioeng. 2002 Aug 20;79(4):389-97.

PMID:
12115402
7.

Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies.

Goulhen F, Gloter A, Guyot F, Bruschi M.

Appl Microbiol Biotechnol. 2006 Aug;71(6):892-7. Epub 2005 Nov 17.

PMID:
16896506
8.

Chromate reductase activity in Streptomyces sp. MC1.

Polti MA, Amoroso MJ, Abate CM.

J Gen Appl Microbiol. 2010 Feb;56(1):11-8.

9.

Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria.

Chardin B, Dolla A, Chaspoul F, Fardeau ML, Gallice P, Bruschi M.

Appl Microbiol Biotechnol. 2002 Nov;60(3):352-60. Epub 2002 Sep 20.

PMID:
12436319
10.

Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases.

Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M.

Appl Microbiol Biotechnol. 2001 Jan;55(1):95-100.

PMID:
11234966
11.

Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: implications for long-term chromate reduction.

Viamajala S, Smith WA, Sani RK, Apel WA, Petersen JN, Neal AL, Roberto FF, Newby DT, Peyton BM.

Bioresour Technol. 2007 Feb;98(3):612-22. Epub 2006 Apr 27.

PMID:
16644211
12.

Reduction of uranium by Desulfovibrio desulfuricans.

Lovley DR, Phillips EJ.

Appl Environ Microbiol. 1992 Mar;58(3):850-6.

13.

Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics.

Puzon GJ, Roberts AG, Kramer DM, Xun L.

Environ Sci Technol. 2005 Apr 15;39(8):2811-7.

PMID:
15884380
14.

Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil.

Sarangi A, Krishnan C.

Bioresour Technol. 2008 Jul;99(10):4130-7. Epub 2007 Oct 24.

PMID:
17920879
15.

Permeable reactive biobarriers for in situ Cr(VI) reduction: bench scale tests using Cellulomonas sp. strain ES6.

Viamajala S, Peyton BM, Gerlach R, Sivaswamy V, Apel WA, Petersen JN.

Biotechnol Bioeng. 2008 Dec 15;101(6):1150-62. doi: 10.1002/bit.22020.

PMID:
18683257
16.

Cytochrome b(5) plays a key role in human microsomal chromium(VI) reduction.

Jannetto PJ, Antholine WE, Myers CR.

Toxicology. 2001 Feb 28;159(3):119-33.

PMID:
11223168
17.
18.

D-lactate dehydrogenase of Desulfovibrio vulgaris.

Ogata M, Arihara K, Yagi T.

J Biochem. 1981 May;89(5):1423-31.

19.

Bioremediation of Cr(VI) in contaminated soils.

Krishna KR, Philip L.

J Hazard Mater. 2005 May 20;121(1-3):109-17.

PMID:
15885411
20.

Microbial reduction of chromate in the presence of nitrate by three nitrate respiring organisms.

Chovanec P, Sparacino-Watkins C, Zhang N, Basu P, Stolz JF.

Front Microbiol. 2012 Dec 17;3:416. doi: 10.3389/fmicb.2012.00416. eCollection 2012.

Supplemental Content

Support Center