Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity.

Wojnowski L, Kulle B, Schirmer M, Schlüter G, Schmidt A, Rosenberger A, Vonhof S, Bickeböller H, Toliat MR, Suk EK, Tzvetkov M, Kruger A, Seifert S, Kloess M, Hahn H, Loeffler M, Nürnberg P, Pfreundschuh M, Trümper L, Brockmöller J, Hasenfuss G.

Circulation. 2005 Dec 13;112(24):3754-62. Epub 2005 Dec 5.

PMID:
16330681
2.

Genetic polymorphisms of NAD(P)H oxidase: variation in subunit expression and enzyme activity.

Schirmer M, Hoffmann M, Kaya E, Tzvetkov M, Brockmöller J.

Pharmacogenomics J. 2008 Aug;8(4):297-304. Epub 2007 Aug 7.

PMID:
17684477
3.

A functional polymorphism in the NAD(P)H oxidase subunit CYBA is related to gene expression, enzyme activity, and outcome in non-Hodgkin lymphoma.

Hoffmann M, Schirmer MA, Tzvetkov MV, Kreuz M, Ziepert M, Wojnowski L, Kube D, Pfreundschuh M, Trümper L, Loeffler M, Brockmöller J; German Study Group for High-Grade Non-Hodgkin Lymphoma.

Cancer Res. 2010 Mar 15;70(6):2328-38. doi: 10.1158/0008-5472.CAN-09-2388. Epub 2010 Mar 9.

4.

Gp91phox-containing NAD(P)H oxidase increases superoxide formation by doxorubicin and NADPH.

Deng S, Kruger A, Kleschyov AL, Kalinowski L, Daiber A, Wojnowski L.

Free Radic Biol Med. 2007 Feb 15;42(4):466-73. Epub 2006 Nov 15.

PMID:
17275678
5.

No association between genetic polymorphisms in NAD(P)H oxidase p22phox and paraoxonase 1 and colorectal cancer risk.

Van Der Logt EM, Janssen CH, Van Hooijdonk Z, Roelofs HM, Wobbes T, Nagengast FM, Peters WH.

Anticancer Res. 2005 Mar-Apr;25(2B):1465-70.

6.

Association of anthracycline-related cardiac histological lesions with NADPH oxidase functional polymorphisms.

Cascales A, Pastor-Quirante F, Sánchez-Vega B, Luengo-Gil G, Corral J, Ortuño-Pacheco G, Vicente V, de la Peña FA.

Oncologist. 2013;18(4):446-53. doi: 10.1634/theoncologist.2012-0239. Epub 2013 Apr 10.

7.

NADPH oxidase p22phox and catalase gene variants are associated with biomarkers of oxidative stress and adverse outcomes in acute renal failure.

Perianayagam MC, Liangos O, Kolyada AY, Wald R, MacKinnon RW, Li L, Rao M, Balakrishnan VS, Bonventre JV, Pereira BJ, Jaber BL.

J Am Soc Nephrol. 2007 Jan;18(1):255-63. Epub 2006 Dec 6.

8.

Haplotype analysis of NAD(P)H oxidase p22 phox polymorphisms in end-stage renal disease.

Doi K, Noiri E, Nakao A, Fujita T, Kobayashi S, Tokunaga K.

J Hum Genet. 2005;50(12):641-7. Epub 2005 Oct 8.

PMID:
16215641
9.

Insight into the role of CYBA A640G and C242T gene variants and coronary heart disease risk. A case-control study.

Macías-Reyes A, Rodríguez-Esparragón F, Caballero-Hidalgo A, Hernández-Trujillo Y, Medina A, Rodríguez-Pérez JC.

Free Radic Res. 2008 Jan;42(1):82-92. doi: 10.1080/10715760701796918.

PMID:
18324526
10.

Genotyping the risk of anthracycline-induced cardiotoxicity.

Deng S, Wojnowski L.

Cardiovasc Toxicol. 2007;7(2):129-34. Review.

PMID:
17652817
12.

Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation.

Armenian SH, Ding Y, Mills G, Sun C, Venkataraman K, Wong FL, Neuhausen SL, Senitzer D, Wang S, Forman SJ, Bhatia S.

Br J Haematol. 2013 Oct;163(2):205-13. doi: 10.1111/bjh.12516. Epub 2013 Aug 8.

13.

Association of NADPH oxidase polymorphisms with anthracycline-induced cardiotoxicity in the RICOVER-60 trial of patients with aggressive CD20(+) B-cell lymphoma.

Reichwagen A, Ziepert M, Kreuz M, Gödtel-Armbrust U, Rixecker T, Poeschel V, Reza Toliat M, Nürnberg P, Tzvetkov M, Deng S, Trümper L, Hasenfuss G, Pfreundschuh M, Wojnowski L.

Pharmacogenomics. 2015;16(4):361-72. doi: 10.2217/pgs.14.179.

PMID:
25823784
14.

Human heart cytosolic reductases and anthracycline cardiotoxicity.

Mordente A, Meucci E, Martorana GE, Giardina B, Minotti G.

IUBMB Life. 2001 Jul;52(1-2):83-8. Review.

15.

Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction.

Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S, Manes C, Schieffer B, Drexler H, Landmesser U.

Circ Res. 2007 Mar 30;100(6):894-903. Epub 2007 Mar 1.

PMID:
17332431
16.

Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin's lymphoma.

Hershman DL, McBride RB, Eisenberger A, Tsai WY, Grann VR, Jacobson JS.

J Clin Oncol. 2008 Jul 1;26(19):3159-65. doi: 10.1200/JCO.2007.14.1242.

PMID:
18591554
17.

The C242T polymorphism of the p22phox component of NAD(P)H oxidase and vascular risk. Two case-control studies and a meta-analysis.

Di Castelnuovo A, Soccio M, Iacoviello L, Evangelista V, Consoli A, Vanuzzo D, Diviacco S, Carluccio M, Rignanese L, De Caterina R.

Thromb Haemost. 2008 Mar;99(3):594-601. doi: 10.1160/TH07-08-0480.

PMID:
18327409
18.

A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity.

Olsson LM, Lindqvist AK, Källberg H, Padyukov L, Burkhardt H, Alfredsson L, Klareskog L, Holmdahl R.

Arthritis Res Ther. 2007;9(5):R98.

19.

Association of CYP1A2 genetic polymorphisms with hepatocellular carcinoma susceptibility: a case-control study in a high-risk region of China.

Chen X, Wang H, Xie W, Liang R, Wei Z, Zhi L, Zhang X, Hao B, Zhong S, Zhou G, Zhang L, Gao X, Zhu Y, He F.

Pharmacogenet Genomics. 2006 Mar;16(3):219-27.

PMID:
16495781
20.

Haplotype analysis of the NADPH oxidase p22 phox gene in patients with bronchial asthma.

Izakovicova Holla L, Kanková K, Znojil V.

Int Arch Allergy Immunol. 2009;148(1):73-80. doi: 10.1159/000151508. Epub 2008 Aug 21.

PMID:
18716406

Supplemental Content

Support Center