Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection.

Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM.

J Exp Med. 2005 Oct 17;202(8):1087-98.

2.

CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system.

Durrant DM, Daniels BP, Pasieka T, Dorsey D, Klein RS.

J Neuroinflammation. 2015 Dec 15;12:233. doi: 10.1186/s12974-015-0447-9.

3.

Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system.

Shrestha B, Zhang B, Purtha WE, Klein RS, Diamond MS.

J Virol. 2008 Sep;82(18):8956-64. doi: 10.1128/JVI.01118-08. Epub 2008 Jul 16.

4.

CD40-CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis.

Sitati E, McCandless EE, Klein RS, Diamond MS.

J Virol. 2007 Sep;81(18):9801-11. Epub 2007 Jul 11.

5.

IL-1R1 signaling regulates CXCL12-mediated T cell localization and fate within the central nervous system during West Nile Virus encephalitis.

Durrant DM, Daniels BP, Klein RS.

J Immunol. 2014 Oct 15;193(8):4095-106. doi: 10.4049/jimmunol.1401192. Epub 2014 Sep 8.

6.

CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons.

Shrestha B, Pinto AK, Green S, Bosch I, Diamond MS.

J Virol. 2012 Sep;86(17):8937-48. doi: 10.1128/JVI.00673-12. Epub 2012 Jun 27.

7.

Dynamics of Tissue-Specific CD8+ T Cell Responses during West Nile Virus Infection.

Aguilar-Valenzuela R, Netland J, Seo YJ, Bevan MJ, Grakoui A, Suthar MS.

J Virol. 2018 Apr 27;92(10). pii: e00014-18. doi: 10.1128/JVI.00014-18. Print 2018 May 15.

PMID:
29514902
8.

Differential Roles of Chemokines CCL2 and CCL7 in Monocytosis and Leukocyte Migration during West Nile Virus Infection.

Bardina SV, Michlmayr D, Hoffman KW, Obara CJ, Sum J, Charo IF, Lu W, Pletnev AG, Lim JK.

J Immunol. 2015 Nov 1;195(9):4306-18. doi: 10.4049/jimmunol.1500352. Epub 2015 Sep 23.

9.

MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis.

Zhao J, Vijay R, Zhao J, Gale M Jr., Diamond MS, Perlman S.

J Virol. 2016 Jul 27;90(16):7098-7108. doi: 10.1128/JVI.00707-16. Print 2016 Aug 15.

10.

CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system.

Sitati EM, Diamond MS.

J Virol. 2006 Dec;80(24):12060-9. Epub 2006 Oct 11.

11.

CD8(+) T cell-mediated immune responses in West Nile virus (Sarafend strain) encephalitis are independent of gamma interferon.

Wang Y, Lobigs M, Lee E, Koskinen A, Müllbacher A.

J Gen Virol. 2006 Dec;87(Pt 12):3599-609.

PMID:
17098975
12.

Inflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in west Nile virus encephalitis.

Kumar M, Roe K, Orillo B, Muruve DA, Nerurkar VR, Gale M Jr, Verma S.

J Virol. 2013 Apr;87(7):3655-67. doi: 10.1128/JVI.02667-12. Epub 2013 Jan 9.

13.

IPS-1 is essential for the control of West Nile virus infection and immunity.

Suthar MS, Ma DY, Thomas S, Lund JM, Zhang N, Daffis S, Rudensky AY, Bevan MJ, Clark EA, Kaja MK, Diamond MS, Gale M Jr.

PLoS Pathog. 2010 Feb 5;6(2):e1000757. doi: 10.1371/journal.ppat.1000757.

14.

Reduced immune cell infiltration and increased pro-inflammatory mediators in the brain of Type 2 diabetic mouse model infected with West Nile virus.

Kumar M, Roe K, Nerurkar PV, Orillo B, Thompson KS, Verma S, Nerurkar VR.

J Neuroinflammation. 2014 Apr 21;11:80. doi: 10.1186/1742-2094-11-80.

15.

High clonality of virus-specific T lymphocytes defined by TCR usage in the brains of mice infected with West Nile virus.

Kitaura K, Fujii Y, Hayasaka D, Matsutani T, Shirai K, Nagata N, Lim CK, Suzuki S, Takasaki T, Suzuki R, Kurane I.

J Immunol. 2011 Oct 15;187(8):3919-30. doi: 10.4049/jimmunol.1100442. Epub 2011 Sep 9.

16.
17.
18.

The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system.

Szretter KJ, Daffis S, Patel J, Suthar MS, Klein RS, Gale M Jr, Diamond MS.

J Virol. 2010 Dec;84(23):12125-38. doi: 10.1128/JVI.01026-10. Epub 2010 Sep 29.

19.

Defective inflammatory monocyte development in IRF8-deficient mice abrogates migration to the West Nile virus-infected brain.

Terry RL, Deffrasnes C, Getts DR, Minten C, van Vreden C, Ashhurst TM, Getts MT, Xie RD, Campbell IL, King NJ.

J Innate Immun. 2015;7(1):102-12. doi: 10.1159/000365972. Epub 2014 Sep 23.

20.

The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis.

Gorman MJ, Poddar S, Farzan M, Diamond MS.

J Virol. 2016 Aug 26;90(18):8212-25. doi: 10.1128/JVI.00581-16. Print 2016 Sep 15.

Supplemental Content

Support Center