Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 290

1.

Toward a unified model of vertebrate rod phototransduction.

Hamer RD, Nicholas SC, Tranchina D, Lamb TD, Jarvinen JL.

Vis Neurosci. 2005 Jul-Aug;22(4):417-36.

4.

Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses.

Hamer RD, Nicholas SC, Tranchina D, Liebman PA, Lamb TD.

J Gen Physiol. 2003 Oct;122(4):419-44. Epub 2003 Sep 15.

5.

Kinetics of turn-offs of frog rod phototransduction cascade.

Astakhova LA, Firsov ML, Govardovskii VI.

J Gen Physiol. 2008 Nov;132(5):587-604. doi: 10.1085/jgp.200810034.

6.
7.

The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse.

Nikonov S, Lamb TD, Pugh EN Jr.

J Gen Physiol. 2000 Dec;116(6):795-824. Erratum in: J Gen Physiol 2001 Apr;117(4):367.

8.

Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.

Sakurai K, Young JE, Kefalov VJ, Khani SC.

Invest Ophthalmol Vis Sci. 2011 Aug 29;52(9):6793-800. doi: 10.1167/iovs.11-7158.

9.

Modulation of mouse rod response decay by rhodopsin kinase and recoverin.

Chen CK, Woodruff ML, Chen FS, Chen Y, Cilluffo MC, Tranchina D, Fain GL.

J Neurosci. 2012 Nov 7;32(45):15998-6006. doi: 10.1523/JNEUROSCI.1639-12.2012.

10.

Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.

Berry J, Frederiksen R, Yao Y, Nymark S, Chen J, Cornwall C.

J Neurosci. 2016 Jun 29;36(26):6973-87. doi: 10.1523/JNEUROSCI.3544-15.2016.

11.

Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors.

Corson DW, Kefalov VJ, Cornwall MC, Crouch RK.

J Gen Physiol. 2000 Aug;116(2):283-97.

12.
13.

Photoresponses of human rods in vivo derived from paired-flash electroretinograms.

Pepperberg DR, Birch DG, Hood DC.

Vis Neurosci. 1997 Jan-Feb;14(1):73-82.

PMID:
9057270
14.

Effects of low AIPL1 expression on phototransduction in rods.

Makino CL, Wen XH, Michaud N, Peshenko IV, Pawlyk B, Brush RS, Soloviev M, Liu X, Woodruff ML, Calvert PD, Savchenko AB, Anderson RE, Fain GL, Li T, Sandberg MA, Dizhoor AM.

Invest Ophthalmol Vis Sci. 2006 May;47(5):2185-94. Erratum in: Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2279.

PMID:
16639031
15.
16.

Onset of feedback reactions underlying vertebrate rod photoreceptor light adaptation.

Calvert PD, Ho TW, LeFebvre YM, Arshavsky VY.

J Gen Physiol. 1998 Jan;111(1):39-51.

17.

Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation.

Chen CK, Woodruff ML, Fain GL.

J Gen Physiol. 2015 Mar;145(3):213-24. doi: 10.1085/jgp.201411273. Epub 2015 Feb 9.

18.

Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.

Chan S, Rubin WW, Mendez A, Liu X, Song X, Hanson SM, Craft CM, Gurevich VV, Burns ME, Chen J.

Invest Ophthalmol Vis Sci. 2007 May;48(5):1968-75.

19.
20.

Mathematical and computational modelling of spatio-temporal signalling in rod phototransduction.

Caruso G, Khanal H, Alexiades V, Rieke F, Hamm HE, DiBenedetto E.

Syst Biol (Stevenage). 2005 Sep;152(3):119-37.

PMID:
16986276

Supplemental Content

Support Center