Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes.

O'Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, Sesay A, Modino S, Vanes L, Hernandez D, Linehan JM, Sharpe PT, Brandner S, Bliss TV, Henderson DJ, Nizetic D, Tybulewicz VL, Fisher EM.

Science. 2005 Sep 23;309(5743):2033-7.

2.

Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome.

Morice E, Andreae LC, Cooke SF, Vanes L, Fisher EM, Tybulewicz VL, Bliss TV.

Learn Mem. 2008 Jul 14;15(7):492-500. doi: 10.1101/lm.969608. Print 2008 Jul.

3.

Impairments in motor coordination without major changes in cerebellar plasticity in the Tc1 mouse model of Down syndrome.

Galante M, Jani H, Vanes L, Daniel H, Fisher EM, Tybulewicz VL, Bliss TV, Morice E.

Hum Mol Genet. 2009 Apr 15;18(8):1449-63. doi: 10.1093/hmg/ddp055. Epub 2009 Jan 29.

4.

Down syndrome mouse models are looking up.

Reeves RH.

Trends Mol Med. 2006 Jun;12(6):237-40. Epub 2006 May 4.

PMID:
16677859
5.

Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome.

Gribble SM, Wiseman FK, Clayton S, Prigmore E, Langley E, Yang F, Maguire S, Fu B, Rajan D, Sheppard O, Scott C, Hauser H, Stephens PJ, Stebbings LA, Ng BL, Fitzgerald T, Quail MA, Banerjee R, Rothkamm K, Tybulewicz VL, Fisher EM, Carter NP.

PLoS One. 2013 Apr 15;8(4):e60482. doi: 10.1371/journal.pone.0060482. Print 2013.

6.

The telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome.

Duchon A, Pothion S, Brault V, Sharp AJ, Tybulewicz VL, Fisher EM, Herault Y.

Behav Brain Res. 2011 Mar 1;217(2):271-81. doi: 10.1016/j.bbr.2010.10.023. Epub 2010 Oct 31.

7.

Transchromosomal mouse embryonic stem cell lines and chimeric mice that contain freely segregating segments of human chromosome 21.

Hernandez D, Mee PJ, Martin JE, Tybulewicz VL, Fisher EM.

Hum Mol Genet. 1999 May;8(5):923-33.

PMID:
10196383
8.

Down's syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse.

Dunlevy L, Bennett M, Slender A, Lana-Elola E, Tybulewicz VL, Fisher EM, Mohun T.

Cardiovasc Res. 2010 Nov 1;88(2):287-95. doi: 10.1093/cvr/cvq193. Epub 2010 Jun 16.

9.

Human chromosome 21 orthologous region on mouse chromosome 17 is a major determinant of Down syndrome-related developmental cognitive deficits.

Zhang L, Meng K, Jiang X, Liu C, Pao A, Belichenko PV, Kleschevnikov AM, Josselyn S, Liang P, Ye P, Mobley WC, Yu YE.

Hum Mol Genet. 2014 Feb 1;23(3):578-89. doi: 10.1093/hmg/ddt446. Epub 2013 Sep 16.

10.

Genetics. Mouse with human chromosome should boost Down syndrome research.

Miller G.

Science. 2005 Sep 23;309(5743):1975. No abstract available.

PMID:
16179439
11.

Effects of individual segmental trisomies of human chromosome 21 syntenic regions on hippocampal long-term potentiation and cognitive behaviors in mice.

Yu T, Liu C, Belichenko P, Clapcote SJ, Li S, Pao A, Kleschevnikov A, Bechard AR, Asrar S, Chen R, Fan N, Zhou Z, Jia Z, Chen C, Roder JC, Liu B, Baldini A, Mobley WC, Yu YE.

Brain Res. 2010 Dec 17;1366:162-71. doi: 10.1016/j.brainres.2010.09.107. Epub 2010 Oct 26.

12.

The "Down syndrome critical region" is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome.

Belichenko NP, Belichenko PV, Kleschevnikov AM, Salehi A, Reeves RH, Mobley WC.

J Neurosci. 2009 May 6;29(18):5938-48. doi: 10.1523/JNEUROSCI.1547-09.2009.

13.

Engineered chromosome-based genetic mapping establishes a 3.7 Mb critical genomic region for Down syndrome-associated heart defects in mice.

Liu C, Morishima M, Jiang X, Yu T, Meng K, Ray D, Pao A, Ye P, Parmacek MS, Yu YE.

Hum Genet. 2014 Jun;133(6):743-53. doi: 10.1007/s00439-013-1407-z. Epub 2013 Dec 22.

14.

An additional human chromosome 21 causes suppression of neural fate of pluripotent mouse embryonic stem cells in a teratoma model.

Mensah A, Mulligan C, Linehan J, Ruf S, O'Doherty A, Grygalewicz B, Shipley J, Groet J, Tybulewicz V, Fisher E, Brandner S, Nizetic D.

BMC Dev Biol. 2007 Nov 29;7:131.

15.

Dosage of the Abcg1-U2af1 region modifies locomotor and cognitive deficits observed in the Tc1 mouse model of Down syndrome.

Marechal D, Lopes Pereira P, Duchon A, Herault Y.

PLoS One. 2015 Feb 23;10(2):e0115302. doi: 10.1371/journal.pone.0115302. eCollection 2015.

16.

A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions.

Yu T, Li Z, Jia Z, Clapcote SJ, Liu C, Li S, Asrar S, Pao A, Chen R, Fan N, Carattini-Rivera S, Bechard AR, Spring S, Henkelman RM, Stoica G, Matsui S, Nowak NJ, Roder JC, Chen C, Bradley A, Yu YE.

Hum Mol Genet. 2010 Jul 15;19(14):2780-91. doi: 10.1093/hmg/ddq179. Epub 2010 May 4.

17.

Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down's syndrome.

Shinohara T, Tomizuka K, Miyabara S, Takehara S, Kazuki Y, Inoue J, Katoh M, Nakane H, Iino A, Ohguma A, Ikegami S, Inokuchi K, Ishida I, Reeves RH, Oshimura M.

Hum Mol Genet. 2001 May 15;10(11):1163-75.

PMID:
11371509
18.

Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome.

Goodliffe JW, Olmos-Serrano JL, Aziz NM, Pennings JL, Guedj F, Bianchi DW, Haydar TF.

J Neurosci. 2016 Mar 9;36(10):2926-44. doi: 10.1523/JNEUROSCI.2513-15.2016.

19.

On the cause of mental retardation in Down syndrome: extrapolation from full and segmental trisomy 16 mouse models.

Galdzicki Z, Siarey R, Pearce R, Stoll J, Rapoport SI.

Brain Res Brain Res Rev. 2001 Apr;35(2):115-45. Review.

PMID:
11336779
20.

Human embryonic stem cells as models for aneuploid chromosomal syndromes.

Biancotti JC, Narwani K, Buehler N, Mandefro B, Golan-Lev T, Yanuka O, Clark A, Hill D, Benvenisty N, Lavon N.

Stem Cells. 2010 Sep;28(9):1530-40. doi: 10.1002/stem.483.

Supplemental Content

Support Center