Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 202

1.

Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase.

Becker HM, Hirnet D, Fecher-Trost C, Sültemeyer D, Deitmer JW.

J Biol Chem. 2005 Dec 2;280(48):39882-9. Epub 2005 Sep 20.

2.

Nonenzymatic proton handling by carbonic anhydrase II during H+-lactate cotransport via monocarboxylate transporter 1.

Becker HM, Deitmer JW.

J Biol Chem. 2008 Aug 1;283(31):21655-67. doi: 10.1074/jbc.M802134200. Epub 2008 Jun 6.

3.

Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH.

Bröer S, Schneider HP, Bröer A, Rahman B, Hamprecht B, Deitmer JW.

Biochem J. 1998 Jul 1;333 ( Pt 1):167-74.

4.

Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters.

Klier M, Andes FT, Deitmer JW, Becker HM.

J Biol Chem. 2014 Jan 31;289(5):2765-75. doi: 10.1074/jbc.M113.537043. Epub 2013 Dec 12.

5.
6.
7.

Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II.

Becker HM, Klier M, Deitmer JW.

J Membr Biol. 2010 Apr;234(2):125-35. doi: 10.1007/s00232-010-9240-y. Epub 2010 Mar 19.

PMID:
20300744
8.
9.
10.

Transport and uptake of nateglinide in Caco-2 cells and its inhibitory effect on human monocarboxylate transporter MCT1.

Okamura A, Emoto A, Koyabu N, Ohtani H, Sawada Y.

Br J Pharmacol. 2002 Oct;137(3):391-9.

11.

Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3- cotransporter.

Becker HM, Deitmer JW.

J Biol Chem. 2007 May 4;282(18):13508-21. Epub 2007 Mar 12.

12.

Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II.

Noor SI, Dietz S, Heidtmann H, Boone CD, McKenna R, Deitmer JW, Becker HM.

J Biol Chem. 2015 Feb 13;290(7):4476-86. doi: 10.1074/jbc.M114.624577. Epub 2015 Jan 5.

13.

Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II.

Becker HM, Klier M, Schüler C, McKenna R, Deitmer JW.

Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3071-6. doi: 10.1073/pnas.1014293108. Epub 2011 Jan 31.

14.

Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes.

Nakhoul NL, Davis BA, Romero MF, Boron WF.

Am J Physiol. 1998 Feb;274(2 Pt 1):C543-8.

15.

Bicarbonate, NBCe1, NHE, and carbonic anhydrase activity enhance lactate-H+ transport in bovine corneal endothelium.

Nguyen TT, Bonanno JA.

Invest Ophthalmol Vis Sci. 2011 Oct 17;52(11):8086-93. doi: 10.1167/iovs.11-8086.

16.

The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells.

Dimmer KS, Friedrich B, Lang F, Deitmer JW, Bröer S.

Biochem J. 2000 Aug 15;350 Pt 1:219-27.

17.

Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes.

Lu J, Daly CM, Parker MD, Gill HS, Piermarini PM, Pelletier MF, Boron WF.

J Biol Chem. 2006 Jul 14;281(28):19241-50. Epub 2006 May 10.

18.
19.

A monocarboxylate transporter MCT1 is located at the basolateral pole of rat jejunum.

Orsenigo MN, Tosco M, Bazzini C, Laforenza U, Faelli A.

Exp Physiol. 1999 Nov;84(6):1033-42.

PMID:
10564700
20.

Mitochondrial carbonic anhydrase is involved in rat renal glucose synthesis.

Dodgson SJ, Cherian K.

Am J Physiol. 1989 Dec;257(6 Pt 1):E791-6.

PMID:
2514597

Supplemental Content

Support Center