Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.
2.

Human 8-oxoguanine-DNA glycosylase 1 protein and gene are expressed more abundantly in the superficial than basal layer of human epidermis.

Javeri A, Huang XX, Bernerd F, Mason RS, Halliday GM.

DNA Repair (Amst). 2008 Sep 1;7(9):1542-50. doi: 10.1016/j.dnarep.2008.05.011. Epub 2008 Jun 26.

PMID:
18585103
3.

Downregulation of Cockayne syndrome B protein reduces human 8-oxoguanine DNA glycosylase-1 expression and repair of UV radiation-induced 8-oxo-7,8-dihydro-2'-deoxyguanine.

Javeri A, Lyons JG, Huang XX, Halliday GM.

Cancer Sci. 2011 Sep;102(9):1651-8. doi: 10.1111/j.1349-7006.2011.02005.x. Epub 2011 Jul 18.

4.
5.
6.

Oxidative DNA damage and 8-hydroxy-2-deoxyguanosine DNA glycosylase/apurinic lyase in human breast cancer.

Li D, Zhang W, Zhu J, Chang P, Sahin A, Singletary E, Bondy M, Hazra T, Mitra S, Lau SS, Shen J, DiGiovanni J.

Mol Carcinog. 2001 Aug;31(4):214-23.

PMID:
11536371
7.

8-Oxodeoxyguanosine formation in the DNA of cultured cells after exposure to H2O2 alone or with UVB or UVA irradiation.

Rosen JE, Prahalad AK, Williams GM.

Photochem Photobiol. 1996 Jul;64(1):117-22. Erratum in: Photochem Photobiol 1996 Sep;64(3):611.

PMID:
8787006
8.

Normal human oral keratinocytes demonstrate abnormal DNA end joining activity during replicative senescence.

Kang MK, Shin KH, Yip FK, Park NH.

Mech Ageing Dev. 2005 Apr;126(4):475-9. Epub 2004 Dec 9.

PMID:
15722106
9.

Activity of OGG1 variants in the repair of pro-oxidant-induced 8-oxo-2'-deoxyguanosine.

Smart DJ, Chipman JK, Hodges NJ.

DNA Repair (Amst). 2006 Nov 8;5(11):1337-45. Epub 2006 Jul 24.

PMID:
16861056
10.
12.

Combination of azathioprine and UVA irradiation is a major source of cellular 8-oxo-7,8-dihydro-2'-deoxyguanosine.

Cooke MS, Duarte TL, Cooper D, Chen J, Nandagopal S, Evans MD.

DNA Repair (Amst). 2008 Dec 1;7(12):1982-9. doi: 10.1016/j.dnarep.2008.08.007. Epub 2008 Oct 1.

PMID:
18793759
13.

Senescence-associated genes in normal human oral keratinocytes.

Kang MK, Kameta A, Shin KH, Baluda MA, Kim HR, Park NH.

Exp Cell Res. 2003 Jul 15;287(2):272-81.

PMID:
12837283
15.

Ultraviolet-B-induced oxidative DNA base damage in primary normal human epidermal keratinocytes and inhibition by a hydroxyl radical scavenger.

Pelle E, Huang X, Mammone T, Marenus K, Maes D, Frenkel K.

J Invest Dermatol. 2003 Jul;121(1):177-83.

16.

Impaired response to oxidative stress in senescent cells may lead to accumulation of DNA damage in mesothelial cells from aged donors.

Ksiazek K, Piatek K, Witowski J.

Biochem Biophys Res Commun. 2008 Aug 22;373(2):335-9. doi: 10.1016/j.bbrc.2008.06.026. Epub 2008 Jun 17.

PMID:
18565326
17.

Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei.

Nakabeppu Y, Tsuchimoto D, Ichinoe A, Ohno M, Ide Y, Hirano S, Yoshimura D, Tominaga Y, Furuichi M, Sakumi K.

Ann N Y Acad Sci. 2004 Apr;1011:101-11.

PMID:
15126288
18.

Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques.

Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM.

Circulation. 2002 Aug 20;106(8):927-32.

19.

Recognition and excision properties of 8-halogenated-7-deaza-2'-deoxyguanosine as 8-oxo-2'-deoxyguanosine analogues and Fpg and hOGG1 inhibitors.

Yin Y, Sasaki S, Taniguchi Y.

Chembiochem. 2015 May 26;16(8):1190-8. doi: 10.1002/cbic.201402690. Epub 2015 Apr 20.

PMID:
25900576
20.

Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress.

Chatterjee A, Mambo E, Zhang Y, Deweese T, Sidransky D.

BMC Cancer. 2006 Oct 3;6:235.

Supplemental Content

Support Center