Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Protein structures forming the shell of primitive bacterial organelles.

Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO.

Science. 2005 Aug 5;309(5736):936-8.

2.

Atomic-level models of the bacterial carboxysome shell.

Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO.

Science. 2008 Feb 22;319(5866):1083-6. doi: 10.1126/science.1151458.

3.

Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport.

Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC, Kerfeld CA.

J Mol Biol. 2009 Sep 18;392(2):319-33. doi: 10.1016/j.jmb.2009.03.056. Epub 2009 Mar 27.

PMID:
19328811
4.

Self-assembly in the carboxysome: a viral capsid-like protein shell in bacterial cells.

Yeates TO, Tsai Y, Tanaka S, Sawaya MR, Kerfeld CA.

Biochem Soc Trans. 2007 Jun;35(Pt 3):508-11. Review.

PMID:
17511640
5.

Insights from multiple structures of the shell proteins from the beta-carboxysome.

Tanaka S, Sawaya MR, Phillips M, Yeates TO.

Protein Sci. 2009 Jan;18(1):108-20. doi: 10.1002/pro.14.

6.

Structure and mechanisms of a protein-based organelle in Escherichia coli.

Tanaka S, Sawaya MR, Yeates TO.

Science. 2010 Jan 1;327(5961):81-4. doi: 10.1126/science.1179513.

7.

Substrate channels revealed in the trimeric Lactobacillus reuteri bacterial microcompartment shell protein PduB.

Pang A, Liang M, Prentice MB, Pickersgill RW.

Acta Crystallogr D Biol Crystallogr. 2012 Dec;68(Pt 12):1642-52. doi: 10.1107/S0907444912039315. Epub 2012 Nov 9.

PMID:
23151629
8.

Structural insight into the mechanisms of transport across the Salmonella enterica Pdu microcompartment shell.

Crowley CS, Cascio D, Sawaya MR, Kopstein JS, Bobik TA, Yeates TO.

J Biol Chem. 2010 Nov 26;285(48):37838-46. doi: 10.1074/jbc.M110.160580. Epub 2010 Sep 24.

9.

Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell.

Sutter M, Greber B, Aussignargues C, Kerfeld CA.

Science. 2017 Jun 23;356(6344):1293-1297. doi: 10.1126/science.aan3289.

PMID:
28642439
10.

Structure of the PduU shell protein from the Pdu microcompartment of Salmonella.

Crowley CS, Sawaya MR, Bobik TA, Yeates TO.

Structure. 2008 Sep 10;16(9):1324-32. doi: 10.1016/j.str.2008.05.013.

11.

Comparative analysis of carboxysome shell proteins.

Kinney JN, Axen SD, Kerfeld CA.

Photosynth Res. 2011 Sep;109(1-3):21-32. doi: 10.1007/s11120-011-9624-6. Epub 2011 Jan 30. Review.

12.

Structural basis of enzyme encapsulation into a bacterial nanocompartment.

Sutter M, Boehringer D, Gutmann S, Günther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N.

Nat Struct Mol Biol. 2008 Sep;15(9):939-47. doi: 10.1038/nsmb.1473.

PMID:
19172747
13.

Protein-based organelles in bacteria: carboxysomes and related microcompartments.

Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM.

Nat Rev Microbiol. 2008 Sep;6(9):681-91. doi: 10.1038/nrmicro1913. Review.

PMID:
18679172
14.

Selective molecular transport through the protein shell of a bacterial microcompartment organelle.

Chowdhury C, Chun S, Pang A, Sawaya MR, Sinha S, Yeates TO, Bobik TA.

Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):2990-5. doi: 10.1073/pnas.1423672112. Epub 2015 Feb 23.

15.

Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA-binding properties.

Bøggild A, Overgaard M, Valentin-Hansen P, Brodersen DE.

FEBS J. 2009 Jul;276(14):3904-15.

PMID:
19777643
16.

Bacterial microcompartment organelles: protein shell structure and evolution.

Yeates TO, Crowley CS, Tanaka S.

Annu Rev Biophys. 2010;39:185-205. doi: 10.1146/annurev.biophys.093008.131418. Review.

17.

A Complete Structural Inventory of the Mycobacterial Microcompartment Shell Proteins Constrains Models of Global Architecture and Transport.

Mallette E, Kimber MS.

J Biol Chem. 2017 Jan 27;292(4):1197-1210. doi: 10.1074/jbc.M116.754093. Epub 2016 Dec 6.

PMID:
27927988
18.

Crystal structure of the conserved hypothetical protein MPN330 (GI: 1674200) from Mycoplasma pneumoniae.

Das D, Oganesyan N, Yokota H, Pufan R, Kim R, Kim SH.

Proteins. 2005 Feb 1;58(2):504-8. No abstract available.

PMID:
15562512
19.

The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two.

Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kerfeld CA.

J Biol Chem. 2006 Mar 17;281(11):7546-55. Epub 2006 Jan 10.

20.

Structure of the RuBisCO chaperone RbcX from Synechocystis sp. PCC6803.

Tanaka S, Sawaya MR, Kerfeld CA, Yeates TO.

Acta Crystallogr D Biol Crystallogr. 2007 Oct;63(Pt 10):1109-12. Epub 2007 Sep 19.

PMID:
17881829

Supplemental Content

Support Center