Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75

1.

Azo reductase activity of intact saccharomyces cerevisiae cells is dependent on the Fre1p component of plasma membrane ferric reductase.

Ramalho PA, Paiva S, Cavaco-Paulo A, Casal M, Cardoso MH, Ramalho MT.

Appl Environ Microbiol. 2005 Jul;71(7):3882-8.

2.
3.

Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae.

Anderson GJ, Lesuisse E, Dancis A, Roman DG, Labbe P, Klausner RD.

J Inorg Biochem. 1992 Aug 15-Sep;47(3-4):249-55.

PMID:
1431884
4.

Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain.

Lesuisse E, Casteras-Simon M, Labbe P.

J Biol Chem. 1996 Jun 7;271(23):13578-83.

5.

Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae.

Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG.

Mol Cell Biol. 1990 May;10(5):2294-301.

6.

The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae.

Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC.

J Biol Chem. 2001 Mar 30;276(13):10218-23. Epub 2000 Dec 18.

7.
8.
9.

Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae.

Shi X, Stoj C, Romeo A, Kosman DJ, Zhu Z.

J Biol Chem. 2003 Dec 12;278(50):50309-15. Epub 2003 Sep 3.

10.

Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron.

Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD.

Proc Natl Acad Sci U S A. 1992 May 1;89(9):3869-73.

11.

The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase.

Shatwell KP, Dancis A, Cross AR, Klausner RD, Segal AW.

J Biol Chem. 1996 Jun 14;271(24):14240-4.

13.

The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator.

Georgatsou E, Mavrogiannis LA, Fragiadakis GS, Alexandraki D.

J Biol Chem. 1997 May 23;272(21):13786-92.

14.

Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463.

Jadhav JP, Parshetti GK, Kalme SD, Govindwar SP.

Chemosphere. 2007 Jun;68(2):394-400. Epub 2007 Feb 9.

PMID:
17292452
15.
16.

Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities.

Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, van Tilbeurgh H.

J Biol Chem. 2004 Aug 13;279(33):34890-7. Epub 2004 Jun 7.

17.
18.

The metalloreductase Fre6p in Fe-efflux from the yeast vacuole.

Singh A, Kaur N, Kosman DJ.

J Biol Chem. 2007 Sep 28;282(39):28619-26. Epub 2007 Aug 5.

19.

The plasma membrane ferrireductase activity of Saccharomyces cerevisiae is partially controlled by cyclic AMP.

Lesuisse E, Horion B, Labbe P, Hilger F.

Biochem J. 1991 Dec 1;280 ( Pt 2):545-8.

20.

Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures.

Gou M, Qu Y, Zhou J, Ma F, Tan L.

J Hazard Mater. 2009 Oct 15;170(1):314-9. doi: 10.1016/j.jhazmat.2009.04.094. Epub 2009 May 4.

PMID:
19473759

Supplemental Content

Support Center