Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 203

1.

Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation.

Hinnerwisch J, Fenton WA, Furtak KJ, Farr GW, Horwich AL.

Cell. 2005 Jul 1;121(7):1029-41.

2.

The molecular chaperone, ClpA, has a single high affinity peptide binding site per hexamer.

Piszczek G, Rozycki J, Singh SK, Ginsburg A, Maurizi MR.

J Biol Chem. 2005 Apr 1;280(13):12221-30. Epub 2005 Jan 18.

3.

Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the ClpP protease.

Hinnerwisch J, Reid BG, Fenton WA, Horwich AL.

J Biol Chem. 2005 Dec 9;280(49):40838-44. Epub 2005 Oct 5.

4.

An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.

Maglica Z, Striebel F, Weber-Ban E.

J Mol Biol. 2008 Dec 12;384(2):503-11. doi: 10.1016/j.jmb.2008.09.046. Epub 2008 Sep 26.

PMID:
18835567
5.

Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone.

Xia D, Esser L, Singh SK, Guo F, Maurizi MR.

J Struct Biol. 2004 Apr-May;146(1-2):166-79.

PMID:
15037248
6.

Conserved residues in the N-domain of the AAA+ chaperone ClpA regulate substrate recognition and unfolding.

Erbse AH, Wagner JN, Truscott KN, Spall SK, Kirstein J, Zeth K, Turgay K, Mogk A, Bukau B, Dougan DA.

FEBS J. 2008 Apr;275(7):1400-10. doi: 10.1111/j.1742-4658.2008.06304.x. Epub 2008 Feb 14.

7.

Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP.

Hoskins JR, Singh SK, Maurizi MR, Wickner S.

Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8892-7.

8.

Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP.

Singh SK, Grimaud R, Hoskins JR, Wickner S, Maurizi MR.

Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8898-903.

9.

The Escherichia coli ClpA molecular chaperone self-assembles into tetramers.

Veronese PK, Stafford RP, Lucius AL.

Biochemistry. 2009 Oct 6;48(39):9221-33. doi: 10.1021/bi900935q.

PMID:
19650643
10.

Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.

Singh SK, Rozycki J, Ortega J, Ishikawa T, Lo J, Steven AC, Maurizi MR.

J Biol Chem. 2001 Aug 3;276(31):29420-9. Epub 2001 May 9.

11.

The flexible attachment of the N-domains to the ClpA ring body allows their use on demand.

Cranz-Mileva S, Imkamp F, Kolygo K, Maglica Z, Kress W, Weber-Ban E.

J Mol Biol. 2008 Apr 25;378(2):412-24. doi: 10.1016/j.jmb.2008.02.047. Epub 2008 Feb 29.

PMID:
18358489
12.

Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.

Martin A, Baker TA, Sauer RT.

Mol Cell. 2008 Feb 29;29(4):441-50. doi: 10.1016/j.molcel.2008.02.002.

13.
14.
15.

Examination of the polypeptide substrate specificity for Escherichia coli ClpA.

Li T, Lucius AL.

Biochemistry. 2013 Jul 23;52(29):4941-54. doi: 10.1021/bi400178q. Epub 2013 Jul 10.

PMID:
23773038
16.

Both ATPase domains of ClpA are critical for processing of stable protein structures.

Kress W, Mutschler H, Weber-Ban E.

J Biol Chem. 2009 Nov 6;284(45):31441-52. doi: 10.1074/jbc.M109.022319. Epub 2009 Sep 2.

17.

Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes.

Martin A, Baker TA, Sauer RT.

Nat Struct Mol Biol. 2008 Feb;15(2):139-45. doi: 10.1038/nsmb.1380. Epub 2008 Jan 27.

PMID:
18223658
18.
19.

Substrate recognition by the ClpA chaperone component of ClpAP protease.

Hoskins JR, Kim SY, Wickner S.

J Biol Chem. 2000 Nov 10;275(45):35361-7.

20.

Molecular mechanism of polypeptide translocation catalyzed by the Escherichia coli ClpA protein translocase.

Rajendar B, Lucius AL.

J Mol Biol. 2010 Jun 25;399(5):665-79. doi: 10.1016/j.jmb.2010.03.061. Epub 2010 Apr 7.

PMID:
20380838

Supplemental Content

Support Center