Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

Antagonist- and inverse agonist-driven interactions of the vitamin D receptor and the constitutive androstane receptor with corepressor protein.

Lempiäinen H, Molnár F, Macias Gonzalez M, Peräkylä M, Carlberg C.

Mol Endocrinol. 2005 Sep;19(9):2258-72.

PMID:
15905360
2.

Critical role of helix 12 of the vitamin D(3) receptor for the partial agonism of carboxylic ester antagonists.

Väisänen S, Peräkylä M, Kärkkäinen JI, Steinmeyer A, Carlberg C.

J Mol Biol. 2002 Jan 11;315(2):229-38.

PMID:
11779241
3.
4.
6.

Corepressor excess shifts the two-side chain vitamin D analog Gemini from an agonist to an inverse agonist of the vitamin D receptor.

Gonzalez MM, Samenfeld P, Peräkylä M, Carlberg C.

Mol Endocrinol. 2003 Oct;17(10):2028-38.

PMID:
12843209
7.

Carboxylic ester antagonists of 1alpha,25-dihydroxyvitamin D(3) show cell-specific actions.

Herdick M, Steinmeyer A, Carlberg C.

Chem Biol. 2000 Nov;7(11):885-94.

8.

Ligand-mediated conformational changes of the VDR are required for gene transactivation.

Carlberg C.

J Steroid Biochem Mol Biol. 2004 May;89-90(1-5):227-32.

PMID:
15225776
9.

Molecular determinants of nuclear receptor-corepressor interaction.

Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, Lambert MH, Milburn MV, Glass CK, Rosenfeld MG.

Genes Dev. 1999 Dec 15;13(24):3198-208.

10.

A structural basis for the species-specific antagonism of 26,23-lactones on vitamin D signaling.

Peräkylä M, Molnár F, Carlberg C.

Chem Biol. 2004 Aug;11(8):1147-56.

11.

Molecular dynamics simulations for human CAR inverse agonists.

Jyrkkärinne J, Küblbeck J, Pulkkinen J, Honkakoski P, Laatikainen R, Poso A, Laitinen T.

J Chem Inf Model. 2012 Feb 27;52(2):457-64. doi: 10.1021/ci200432k.

PMID:
22233089
12.

Molecular dynamics simulations of the human CAR ligand-binding domain: deciphering the molecular basis for constitutive activity.

Windshügel B, Jyrkkärinne J, Poso A, Honkakoski P, Sippl W.

J Mol Model. 2005 Feb;11(1):69-79.

PMID:
15616833
13.

Identification and characterization of a novel corepressor interaction region in RVR and Rev-erbA alpha.

Burke LJ, Downes M, Laudet V, Muscat GE.

Mol Endocrinol. 1998 Feb;12(2):248-62.

PMID:
9482666
14.
15.

A role of helix 12 of the vitamin D receptor in SMRT corepressor interaction.

Kim JY, Son YL, Lee YC.

Biochem Biophys Res Commun. 2009 Feb 13;379(3):780-4. doi: 10.1016/j.bbrc.2008.12.155.

PMID:
19133230
16.

Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha.

Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE, McKee DD, Galardi CM, Plunket KD, Nolte RT, Parks DJ, Moore JT, Kliewer SA, Willson TM, Stimmel JB.

Nature. 2002 Feb 14;415(6873):813-7.

PMID:
11845213
17.

Vitamin D-dependent recruitment of corepressors to vitamin D/retinoid X receptor heterodimers.

Sánchez-Martínez R, Zambrano A, Castillo AI, Aranda A.

Mol Cell Biol. 2008 Jun;28(11):3817-29. doi: 10.1128/MCB.01909-07.

18.

Insights from a three-dimensional model into ligand binding to constitutive active receptor.

Xiao L, Cui X, Madison V, White RE, Cheng KC.

Drug Metab Dispos. 2002 Sep;30(9):951-6.

19.

A structural model of the constitutive androstane receptor defines novel interactions that mediate ligand-independent activity.

Dussault I, Lin M, Hollister K, Fan M, Termini J, Sherman MA, Forman BM.

Mol Cell Biol. 2002 Aug;22(15):5270-80.

20.

Supplemental Content

Support Center