Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 184

1.

Clostridium difficile toxins: mechanism of action and role in disease.

Voth DE, Ballard JD.

Clin Microbiol Rev. 2005 Apr;18(2):247-63. Review.

2.

Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure.

Hirota SA, Iablokov V, Tulk SE, Schenck LP, Becker H, Nguyen J, Al Bashir S, Dingle TC, Laing A, Liu J, Li Y, Bolstad J, Mulvey GL, Armstrong GD, MacNaughton WK, Muruve DA, MacDonald JA, Beck PL.

Infect Immun. 2012 Dec;80(12):4474-84. doi: 10.1128/IAI.00933-12. Epub 2012 Oct 8.

3.

Processing of Clostridium difficile toxins.

Giesemann T, Egerer M, Jank T, Aktories K.

J Med Microbiol. 2008 Jun;57(Pt 6):690-6. doi: 10.1099/jmm.0.47742-0. Review.

PMID:
18480324
4.

TcdB or not TcdB: a tale of two Clostridium difficile toxins.

Carter GP, Awad MM, Kelly ML, Rood JI, Lyras D.

Future Microbiol. 2011 Feb;6(2):121-3. doi: 10.2217/fmb.10.169. No abstract available.

5.

Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections.

Carter GP, Chakravorty A, Pham Nguyen TA, Mileto S, Schreiber F, Li L, Howarth P, Clare S, Cunningham B, Sambol SP, Cheknis A, Figueroa I, Johnson S, Gerding D, Rood JI, Dougan G, Lawley TD, Lyras D.

MBio. 2015 Jun 2;6(3):e00551. doi: 10.1128/mBio.00551-15.

6.

High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types.

D'Auria KM, Bloom MJ, Reyes Y, Gray MC, van Opstal EJ, Papin JA, Hewlett EL.

BMC Microbiol. 2015 Feb 4;15:7. doi: 10.1186/s12866-015-0361-4.

7.

The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins.

Chen S, Sun C, Wang H, Wang J.

Toxins (Basel). 2015 Dec 2;7(12):5254-67. doi: 10.3390/toxins7124874. Review.

8.

Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides.

Zhang Y, Hamza T, Gao S, Feng H.

Biochem Biophys Res Commun. 2015 Apr 3;459(2):259-63. doi: 10.1016/j.bbrc.2015.02.095. Epub 2015 Feb 26.

9.

Clostridium difficile toxins: more than mere inhibitors of Rho proteins.

Genth H, Dreger SC, Huelsenbeck J, Just I.

Int J Biochem Cell Biol. 2008;40(4):592-7. doi: 10.1016/j.biocel.2007.12.014. Epub 2008 Jan 5. Review.

PMID:
18289919
10.

Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A.

Schoentaube J, Olling A, Tatge H, Just I, Gerhard R.

Cell Microbiol. 2009 Dec;11(12):1816-26. doi: 10.1111/j.1462-5822.2009.01373.x. Epub 2009 Aug 26.

PMID:
19709124
11.

Analysis of the pathogenicity locus in Clostridium difficile strains.

Cohen SH, Tang YJ, Silva J Jr.

J Infect Dis. 2000 Feb;181(2):659-63.

PMID:
10669352
12.

The repetitive oligopeptide sequences modulate cytopathic potency but are not crucial for cellular uptake of Clostridium difficile toxin A.

Olling A, Goy S, Hoffmann F, Tatge H, Just I, Gerhard R.

PLoS One. 2011 Mar 18;6(3):e17623. doi: 10.1371/journal.pone.0017623.

13.

Tolevamer, an anionic polymer, neutralizes toxins produced by the BI/027 strains of Clostridium difficile.

Hinkson PL, Dinardo C, DeCiero D, Klinger JD, Barker RH Jr.

Antimicrob Agents Chemother. 2008 Jun;52(6):2190-5. doi: 10.1128/AAC.00041-08. Epub 2008 Apr 7.

15.

Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene.

Olling A, Seehase S, Minton NP, Tatge H, Schröter S, Kohlscheen S, Pich A, Just I, Gerhard R.

Microb Pathog. 2012 Jan;52(1):92-100. doi: 10.1016/j.micpath.2011.10.009. Epub 2011 Nov 17.

16.

Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques.

Zeiser J, Gerhard R, Just I, Pich A.

J Proteome Res. 2013 Apr 5;12(4):1604-18. doi: 10.1021/pr300973q. Epub 2013 Mar 4.

PMID:
23387933
17.

Toxin gene analysis of a variant strain of Clostridium difficile that causes human clinical disease.

Sambol SP, Merrigan MM, Lyerly D, Gerding DN, Johnson S.

Infect Immun. 2000 Oct;68(10):5480-7.

18.

Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.

Merrigan M, Venugopal A, Mallozzi M, Roxas B, Viswanathan VK, Johnson S, Gerding DN, Vedantam G.

J Bacteriol. 2010 Oct;192(19):4904-11. doi: 10.1128/JB.00445-10. Epub 2010 Jul 30.

19.

CdtR Regulates TcdA and TcdB Production in Clostridium difficile.

Lyon SA, Hutton ML, Rood JI, Cheung JK, Lyras D.

PLoS Pathog. 2016 Jul 14;12(7):e1005758. doi: 10.1371/journal.ppat.1005758. eCollection 2016 Jul.

20.

Supplemental Content

Support Center