Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 267

1.

Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato.

Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L.

Planta. 2005 May;221(2):297-303. Epub 2005 Apr 12.

PMID:
15824907
2.

Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato.

Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L.

Mol Plant Microbe Interact. 2008 Jul;21(7):1001-9. doi: 10.1094/MPMI-21-7-1001.

3.

Nitric oxide plays a central role in determining lateral root development in tomato.

Correa-Aragunde N, Graziano M, Lamattina L.

Planta. 2004 Apr;218(6):900-5. Epub 2004 Jan 10.

PMID:
14716561
4.
5.

Tomato genotype and Azospirillum inoculation modulate the changes in bacterial communities associated with roots and leaves.

Correa OS, Romero AM, Montecchia MS, Soria MA.

J Appl Microbiol. 2007 Mar;102(3):781-6.

6.

Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants.

Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A.

J Biotechnol. 2008 Apr 30;134(3-4):312-9. doi: 10.1016/j.jbiotec.2008.01.020. Epub 2008 Feb 13.

PMID:
18358553
7.

Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato.

Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L.

J Exp Bot. 2006;57(3):581-8. Epub 2006 Jan 12.

PMID:
16410257
8.

Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress.

Alarcón A, Davies FT Jr, Egilla JN, Fox TC, Estrada-Luna AA, Ferrera-Cerrato R.

Rev Latinoam Microbiol. 2002 Jan-Mar;44(1):31-7.

PMID:
17061513
9.

Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

Arruebarrena Di Palma A, Pereyra CM, Moreno Ramirez L, Xiqui Vázquez ML, Baca BE, Pereyra MA, Lamattina L, Creus CM.

FEMS Microbiol Lett. 2013 Jan;338(1):77-85. doi: 10.1111/1574-6968.12030. Epub 2012 Nov 26.

10.

Carbon monoxide promotes root hair development in tomato.

Guo K, Kong WW, Yang ZM.

Plant Cell Environ. 2009 Aug;32(8):1033-45. doi: 10.1111/j.1365-3040.2009.01986.x. Epub 2009 Apr 2.

11.

Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots.

Burdman S, Okon Y, Jurkevitch E.

Crit Rev Microbiol. 2000;26(2):91-110. Review.

PMID:
10890352
12.

Azospirillum spp. metabolize [17,17-2H2]gibberellin A20 to [17,17-2H2]gibberellin A1 in vivo in dy rice mutant seedlings.

Cassán FD, Lucangeli CD, Bottini R, Piccoli PN.

Plant Cell Physiol. 2001 Jul;42(7):763-7.

PMID:
11479384
13.

Expression of the NH(+)(4)-transporter gene LEAMT1;2 is induced in tomato roots upon association with N(2)-fixing bacteria.

Becker D, Stanke R, Fendrik I, Frommer WB, Vanderleyden J, Kaiser WM, Hedrich R.

Planta. 2002 Jul;215(3):424-9. Epub 2002 Apr 24.

PMID:
12111224
14.

[The role of polysaccharide-containing components of the Azospirillum brasilense capsule in adsorbing bacteria on wheat seedling roots].

Egorenkova IV, Konnova SA, Fedonenko IuP, Dykman LA, Ignatov VV.

Mikrobiologiia. 2001 Jan-Feb;70(1):45-50. Russian.

PMID:
11338835
15.

[Participation of azospirillium polysaccharides in interaction with wheat root surface].

Fedonenko IuP, Egorenkova IV, Konnova SA, Ignatov VV.

Mikrobiologiia. 2001 May-Jun;70(3):384-90. Russian.

PMID:
11450462
16.

Duplication of plasmid-borne nitrite reductase gene nirK in the wheat-associated plant growth-promoting rhizobacterium Azospirillum brasilense Sp245.

Pothier JF, Prigent-Combaret C, Haurat J, Moënne-Loccoz Y, Wisniewski-Dyé F.

Mol Plant Microbe Interact. 2008 Jun;21(6):831-42. doi: 10.1094/MPMI-21-6-0831.

17.

2,4-Dichlorophenoxyacetic acid affects the attachment of Azospirillum brasilense Cd to maize roots.

Jofré E, Mori G, Castro S, Fabra A, Rivarola V, Balegno H.

Toxicology. 1996 Jan 22;107(1):9-15.

PMID:
8597034
18.

Elemental composition of strawberry plants inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, assessed with scanning electron microscopy and energy dispersive X-ray analysis.

Guerrero-Molina MF, Lovaisa NC, Salazar SM, Díaz-Ricci JC, Pedraza RO.

Plant Biol (Stuttg). 2014 Jul;16(4):726-31. doi: 10.1111/plb.12114. Epub 2013 Oct 22.

PMID:
24148195
19.

Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245.

Pothier JF, Wisniewski-Dyé F, Weiss-Gayet M, Moënne-Loccoz Y, Prigent-Combaret C.

Microbiology. 2007 Oct;153(Pt 10):3608-22.

PMID:
17906157
20.

The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators.

Couillerot O, Combes-Meynet E, Pothier JF, Bellvert F, Challita E, Poirier MA, Rohr R, Comte G, Moënne-Loccoz Y, Prigent-Combaret C.

Microbiology. 2011 Jun;157(Pt 6):1694-705. doi: 10.1099/mic.0.043943-0. Epub 2011 Jan 27.

PMID:
21273247

Supplemental Content

Support Center