Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

Structure-activity relationships for 2-anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones as inhibitors of the cellular checkpoint kinase Wee1.

Palmer BD, Smaill JB, Rewcastle GW, Dobrusin EM, Kraker A, Moore CW, Steinkampf RW, Denny WA.

Bioorg Med Chem Lett. 2005 Apr 1;15(7):1931-5.

PMID:
15780636
2.

Synthesis and structure-activity relationships of soluble 8-substituted 4-(2-chlorophenyl)-9-hydroxypyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of the Wee1 and Chk1 checkpoint kinases.

Smaill JB, Lee HH, Palmer BD, Thompson AM, Squire CJ, Baker EN, Booth RJ, Kraker A, Hook K, Denny WA.

Bioorg Med Chem Lett. 2008 Feb 1;18(3):929-33. doi: 10.1016/j.bmcl.2007.12.046. Epub 2008 Jan 11.

PMID:
18191399
3.

4-Phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione inhibitors of the checkpoint kinase Wee1. Structure-activity relationships for chromophore modification and phenyl ring substitution.

Palmer BD, Thompson AM, Booth RJ, Dobrusin EM, Kraker AJ, Lee HH, Lunney EA, Mitchell LH, Ortwine DF, Smaill JB, Swan LM, Denny WA.

J Med Chem. 2006 Aug 10;49(16):4896-911.

PMID:
16884302
4.

2-Substituted aminopyrido[2,3-d]pyrimidin-7(8H)-ones. structure-activity relationships against selected tyrosine kinases and in vitro and in vivo anticancer activity.

Klutchko SR, Hamby JM, Boschelli DH, Wu Z, Kraker AJ, Amar AM, Hartl BG, Shen C, Klohs WD, Steinkampf RW, Driscoll DL, Nelson JM, Elliott WL, Roberts BJ, Stoner CL, Vincent PW, Dykes DJ, Panek RL, Lu GH, Major TC, Dahring TK, Hallak H, Bradford LA, Showalter HD, Doherty AM.

J Med Chem. 1998 Aug 13;41(17):3276-92.

PMID:
9703473
5.

Wee1 is required to sustain ATR/Chk1 signaling upon replicative stress.

Saini P, Li Y, Dobbelstein M.

Oncotarget. 2015 May 30;6(15):13072-87.

6.

Synthesis and structure-activity relationships of 7-substituted 3-(2, 6-dichlorophenyl)-1,6-naphthyridin-2(1H)-ones as selective inhibitors of pp60(c-src).

Thompson AM, Rewcastle GW, Boushelle SL, Hartl BG, Kraker AJ, Lu GH, Batley BL, Panek RL, Showalter HD, Denny WA.

J Med Chem. 2000 Aug 10;43(16):3134-47.

PMID:
10956222
7.

Synthesis and structure-activity relationships of N-6 substituted analogues of 9-hydroxy-4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of Wee1 and Chk1 checkpoint kinases.

Smaill JB, Baker EN, Booth RJ, Bridges AJ, Dickson JM, Dobrusin EM, Ivanovic I, Kraker AJ, Lee HH, Lunney EA, Ortwine DF, Palmer BD, Quin J 3rd, Squire CJ, Thompson AM, Denny WA.

Eur J Med Chem. 2008 Jun;43(6):1276-96. Epub 2007 Aug 6.

PMID:
17869387
8.

Inhibition of Src kinase activity by 4-anilino-7-thienyl-3-quinolinecarbonitriles.

Boschelli DH, Wang DY, Ye F, Yamashita A, Zhang N, Powell D, Weber J, Boschelli F.

Bioorg Med Chem Lett. 2002 Aug 5;12(15):2011-4.

PMID:
12113830
9.

Antitumor activity of new pyrazolo[3,4-d]pyrimidine SRC kinase inhibitors in Burkitt lymphoma cell lines and its enhancement by WEE1 inhibition.

Cozzi M, Giorgi F, Marcelli E, Pentimalli F, Forte IM, Schenone S, D'Urso V, De Falco G, Botta M, Giordano A, Indovina P.

Cell Cycle. 2012 Mar 1;11(5):1029-39. doi: 10.4161/cc.11.5.19519. Epub 2012 Mar 1.

PMID:
22333592
10.

Functional Genetic Screen Identifies Increased Sensitivity to WEE1 Inhibition in Cells with Defects in Fanconi Anemia and HR Pathways.

Aarts M, Bajrami I, Herrera-Abreu MT, Elliott R, Brough R, Ashworth A, Lord CJ, Turner NC.

Mol Cancer Ther. 2015 Apr;14(4):865-76. doi: 10.1158/1535-7163.MCT-14-0845. Epub 2015 Feb 11.

11.

Combination therapy targeting the Chk1 and Wee1 kinases shows therapeutic efficacy in neuroblastoma.

Russell MR, Levin K, Rader J, Belcastro L, Li Y, Martinez D, Pawel B, Shumway SD, Maris JM, Cole KA.

Cancer Res. 2013 Jan 15;73(2):776-84. doi: 10.1158/0008-5472.CAN-12-2669. Epub 2012 Nov 7.

13.

Wee1 kinase as a target for cancer therapy.

Do K, Doroshow JH, Kummar S.

Cell Cycle. 2013 Oct 1;12(19):3159-64. doi: 10.4161/cc.26062. Epub 2013 Aug 26. Review.

14.

Targeting Wee1-like protein kinase to treat cancer.

Stathis A, Oza A.

Drug News Perspect. 2010 Sep;23(7):425-9. doi: 10.1358/dnp.2010.23.7.1490760. Review.

PMID:
20862394
15.

BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation.

Yan Y, Spieker RS, Kim M, Stoeger SM, Cowan KH.

Oncogene. 2005 May 5;24(20):3285-96.

PMID:
15735702
16.

Targeting the checkpoint kinase WEE1: selective sensitization of cancer cells to DNA-damaging drugs.

Indovina P, Giordano A.

Cancer Biol Ther. 2010 Apr 1;9(7):523-5. Epub 2010 Apr 1. No abstract available.

PMID:
20150761
17.

Molecular control of the Wee1 regulatory pathway by the SAD kinase Cdr2.

Guzmán-Vendrell M, Rincon SA, Dingli F, Loew D, Paoletti A.

J Cell Sci. 2015 Aug 1;128(15):2842-53. doi: 10.1242/jcs.173146. Epub 2015 Jun 12.

18.
19.

DNA replication checkpoint control of Wee1 stability by vertebrate Hsl7.

Yamada A, Duffy B, Perry JA, Kornbluth S.

J Cell Biol. 2004 Dec 6;167(5):841-9.

20.

Abrogating G₂/M checkpoint through WEE1 inhibition in combination with chemotherapy as a promising therapeutic approach for mesothelioma.

Indovina P, Marcelli E, Di Marzo D, Casini N, Forte IM, Giorgi F, Alfano L, Pentimalli F, Giordano A.

Cancer Biol Ther. 2014 Apr;15(4):380-8. doi: 10.4161/cbt.27623. Epub 2014 Jan 14.

Supplemental Content

Support Center