Warning: The NCBI web site requires JavaScript to function. more...
Generate a file for use with external citation management software.
Significance analysis of functional categories in gene expression studies: a structured permutation approach.
Barry WT, Nobel AB, Wright FA.
Bioinformatics. 2005 May 1;21(9):1943-9. Epub 2005 Jan 12.
Similar articles
Statistical assessment of functional categories of genes deregulated in pathological conditions by using microarray data.
Maglietta R, Piepoli A, Catalano D, Licciulli F, Carella M, Liuni S, Pesole G, Perri F, Ancona N.
Bioinformatics. 2007 Aug 15;23(16):2063-72. Epub 2007 May 31.
Pathway recognition and augmentation by computational analysis of microarray expression data.
Novak BA, Jain AN.
Bioinformatics. 2006 Jan 15;22(2):233-41. Epub 2005 Nov 8.
Empirical Bayes screening of many p-values with applications to microarray studies.
Datta S, Datta S.
Bioinformatics. 2005 May 1;21(9):1987-94. Epub 2005 Feb 2.
Practical FDR-based sample size calculations in microarray experiments.
Hu J, Zou F, Wright FA.
Bioinformatics. 2005 Aug 1;21(15):3264-72. Epub 2005 Jun 2.
A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis.
Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S.
Bioinformatics. 2005 Mar 1;21(5):631-43. Epub 2004 Sep 16.
An efficient Monte Carlo approach to assessing statistical significance in genomic studies.
Lin DY.
Bioinformatics. 2005 Mar;21(6):781-7. Epub 2004 Sep 28.
Discovery of highly differentiative gene groups from microarray gene expression data using the gene club approach.
Mao S, Dong G.
J Bioinform Comput Biol. 2005 Dec;3(6):1263-80.
Improving missing value estimation in microarray data with gene ontology.
Tuikkala J, Elo L, Nevalainen OS, Aittokallio T.
Bioinformatics. 2006 Mar 1;22(5):566-72. Epub 2005 Dec 23.
Multidimensional local false discovery rate for microarray studies.
Ploner A, Calza S, Gusnanto A, Pawitan Y.
Bioinformatics. 2006 Mar 1;22(5):556-65. Epub 2005 Dec 20.
FM-test: a fuzzy-set-theory-based approach to differential gene expression data analysis.
Liang LR, Lu S, Wang X, Lu Y, Mandal V, Patacsil D, Kumar D.
BMC Bioinformatics. 2006 Dec 12;7 Suppl 4:S7.
SAFEGUI: resampling-based tests of categorical significance in gene expression data made easy.
Gatti DM, Sypa M, Rusyn I, Wright FA, Barry WT.
Bioinformatics. 2009 Feb 15;25(4):541-2. doi: 10.1093/bioinformatics/btn655. Epub 2008 Dec 19.
MACAT--microarray chromosome analysis tool.
Toedling J, Schmeier S, Heinig M, Georgi B, Roepcke S.
Bioinformatics. 2005 May 1;21(9):2112-3. Epub 2004 Nov 30.
Bayesian hierarchical error model for analysis of gene expression data.
Cho H, Lee JK.
Bioinformatics. 2004 Sep 1;20(13):2016-25. Epub 2004 Mar 25.
Classification of microarray data with factor mixture models.
Martella F.
Bioinformatics. 2006 Jan 15;22(2):202-8. Epub 2005 Nov 15.
LS Bound based gene selection for DNA microarray data.
Zhou X, Mao KZ.
Bioinformatics. 2005 Apr 15;21(8):1559-64. Epub 2004 Dec 14.
goCluster integrates statistical analysis and functional interpretation of microarray expression data.
Wrobel G, Chalmel F, Primig M.
Bioinformatics. 2005 Sep 1;21(17):3575-7. Epub 2005 Jul 14.
Integration of GO annotations in Correspondence Analysis: facilitating the interpretation of microarray data.
Busold CH, Winter S, Hauser N, Bauer A, Dippon J, Hoheisel JD, Fellenberg K.
Bioinformatics. 2005 May 15;21(10):2424-9. Epub 2005 Mar 3.
On the statistical assessment of classifiers using DNA microarray data.
Ancona N, Maglietta R, Piepoli A, D'Addabbo A, Cotugno R, Savino M, Liuni S, Carella M, Pesole G, Perri F.
BMC Bioinformatics. 2006 Aug 19;7:387.
Interactively optimizing signal-to-noise ratios in expression profiling: project-specific algorithm selection and detection p-value weighting in Affymetrix microarrays.
Seo J, Bakay M, Chen YW, Hilmer S, Shneiderman B, Hoffman EP.
Bioinformatics. 2004 Nov 1;20(16):2534-44. Epub 2004 Apr 29.
Filters: Manage Filters