Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae.

Myung K, Smith S, Kolodner RD.

Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15980-5. Epub 2004 Oct 28.

2.

Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae.

Smith S, Hwang JY, Banerjee S, Majeed A, Gupta A, Myung K.

Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9039-44. Epub 2004 Jun 7.

3.

DNA repair pathway selection caused by defects in TEL1, SAE2, and de novo telomere addition generates specific chromosomal rearrangement signatures.

Putnam CD, Pallis K, Hayes TK, Kolodner RD.

PLoS Genet. 2014 Apr 3;10(4):e1004277. doi: 10.1371/journal.pgen.1004277. eCollection 2014 Apr.

5.

Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae.

Myung K, Chen C, Kolodner RD.

Nature. 2001 Jun 28;411(6841):1073-6.

PMID:
11429610
6.

Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae.

Motegi A, Kuntz K, Majeed A, Smith S, Myung K.

Mol Cell Biol. 2006 Feb;26(4):1424-33.

7.

Suppression of gross chromosomal rearrangements by yKu70-yKu80 heterodimer through DNA damage checkpoints.

Banerjee S, Smith S, Myung K.

Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1816-21. Epub 2006 Jan 30.

8.

Determination of gross chromosomal rearrangement rates.

Putnam CD, Kolodner RD.

Cold Spring Harb Protoc. 2010 Sep 1;2010(9):pdb.prot5492. doi: 10.1101/pdb.prot5492.

9.

A genetic network that suppresses genome rearrangements in Saccharomyces cerevisiae and contains defects in cancers.

Putnam CD, Srivatsan A, Nene RV, Martinez SL, Clotfelter SP, Bell SN, Somach SB, de Souza JE, Fonseca AF, de Souza SJ, Kolodner RD.

Nat Commun. 2016 Apr 13;7:11256. doi: 10.1038/ncomms11256.

10.

Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae.

Myung K, Kolodner RD.

Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4500-7. Epub 2002 Mar 26.

11.
12.

Cdc28/Cdk1 positively and negatively affects genome stability in S. cerevisiae.

Enserink JM, Hombauer H, Huang ME, Kolodner RD.

J Cell Biol. 2009 May 4;185(3):423-37. doi: 10.1083/jcb.200811083. Epub 2009 Apr 27.

13.

Induction of genome instability by DNA damage in Saccharomyces cerevisiae.

Myung K, Kolodner RD.

DNA Repair (Amst). 2003 Mar 1;2(3):243-58.

PMID:
12547388
14.

A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements.

Chan JE, Kolodner RD.

PLoS Genet. 2011 May;7(5):e1002089. doi: 10.1371/journal.pgen.1002089. Epub 2011 May 26.

15.

Analysis of gross-chromosomal rearrangements in Saccharomyces cerevisiae.

Schmidt KH, Pennaneach V, Putnam CD, Kolodner RD.

Methods Enzymol. 2006;409:462-76.

PMID:
16793418
16.
17.
19.

Maintenance of genome stability in Saccharomyces cerevisiae.

Kolodner RD, Putnam CD, Myung K.

Science. 2002 Jul 26;297(5581):552-7. Review.

PMID:
12142524
20.

Specific pathways prevent duplication-mediated genome rearrangements.

Putnam CD, Hayes TK, Kolodner RD.

Nature. 2009 Aug 20;460(7258):984-9. doi: 10.1038/nature08217. Epub 2009 Jul 29.

Supplemental Content

Support Center