Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system.

Pavlou AK, Magan N, Jones JM, Brown J, Klatser P, Turner AP.

Biosens Bioelectron. 2004 Oct 15;20(3):538-44.

PMID:
15494237
2.

Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum.

Fend R, Kolk AH, Bessant C, Buijtels P, Klatser PR, Woodman AC.

J Clin Microbiol. 2006 Jun;44(6):2039-45.

3.

Use of an electronic nose system for diagnoses of urinary tract infections.

Pavlou AK, Magan N, McNulty C, Jones J, Sharp D, Brown J, Turner AP.

Biosens Bioelectron. 2002 Oct;17(10):893-9.

PMID:
12243908
4.

Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks.

Muñoz-Berbel X, Vigués N, Mas J, Del Valle M, Muñoz FJ, Cortina-Puig M.

Biosens Bioelectron. 2008 Dec 1;24(4):964-8. doi: 10.1016/j.bios.2008.07.050. Epub 2008 Aug 3.

PMID:
18783936
5.

Recognition of anaerobic bacterial isolates in vitro using electronic nose technology.

Pavlou A, Turner AP, Magan N.

Lett Appl Microbiol. 2002;35(5):366-9.

6.
7.

An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro.

Pavlou AK, Magan N, Sharp D, Brown J, Barr H, Turner AP.

Biosens Bioelectron. 2000 Oct;15(7-8):333-42.

PMID:
11219746
8.

In-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose technology.

Yusuf N, Zakaria A, Omar MI, Shakaff AY, Masnan MJ, Kamarudin LM, Abdul Rahim N, Zakaria NZ, Abdullah AA, Othman A, Yasin MS.

BMC Bioinformatics. 2015 May 14;16:158. doi: 10.1186/s12859-015-0601-5.

9.

Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine Mycobacterium tuberculosis avoiding false positives.

Qin D, He X, Wang K, Tan W.

Biosens Bioelectron. 2008 Dec 1;24(4):626-31. doi: 10.1016/j.bios.2008.06.023. Epub 2008 Jun 21.

PMID:
18672354
10.

The use of gas-sensor arrays to diagnose urinary tract infections.

Kodogiannis V, Wadge E.

Int J Neural Syst. 2005 Oct;15(5):363-76.

PMID:
16278941
11.

Sniffing out the truth: clinical diagnosis using the electronic nose.

Pavlou AK, Turner AP.

Clin Chem Lab Med. 2000 Feb;38(2):99-112. Review.

PMID:
10834396
12.

Evaluation of the GenoType Mycobacteria Direct assay for direct detection of the Mycobacterium tuberculosis complex obtained from sputum samples.

Kiraz N, Saglik I, Kiremitci A, Kasifoglu N, Akgun Y.

J Med Microbiol. 2010 Aug;59(Pt 8):930-4. doi: 10.1099/jmm.0.013490-0. Epub 2010 May 6.

PMID:
20448064
13.

Electronic noses and disease diagnostics.

Turner AP, Magan N.

Nat Rev Microbiol. 2004 Feb;2(2):161-6. Review.

PMID:
15040263
14.

A rapid amplification/detection assay for analysis of Mycobacterium tuberculosis using an isothermal and silicon bio-photonic sensor complex.

Shin Y, Perera AP, Tang WY, Fu DL, Liu Q, Sheng JK, Gu Z, Lee TY, Barkham T, Park MK.

Biosens Bioelectron. 2015 Jun 15;68:390-6. doi: 10.1016/j.bios.2015.01.030. Epub 2015 Jan 14.

PMID:
25615836
15.

Detection of microbial concentration in ice-cream using the impedance technique.

Grossi M, Lanzoni M, Pompei A, Lazzarini R, Matteuzzi D, Riccò B.

Biosens Bioelectron. 2008 Jun 15;23(11):1616-23. doi: 10.1016/j.bios.2008.01.032. Epub 2008 Feb 12.

PMID:
18353628
17.

Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes.

Díaz-González M, González-García MB, Costa-García A.

Biosens Bioelectron. 2005 Apr 15;20(10):2035-43.

PMID:
15741073
18.
19.
20.

[Mycobacterial tests].

Takashima T, Higuchi T.

Kekkaku. 2008 Jan;83(1):43-59. Japanese.

PMID:
18283915

Supplemental Content

Support Center