Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

Functional interaction between Smad, CREB binding protein, and p68 RNA helicase.

Warner DR, Bhattacherjee V, Yin X, Singh S, Mukhopadhyay P, Pisano MM, Greene RM.

Biochem Biophys Res Commun. 2004 Nov 5;324(1):70-6.

PMID:
15464984
2.

Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300.

Rossow KL, Janknecht R.

Oncogene. 2003 Jan 9;22(1):151-6.

PMID:
12527917
3.

The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling.

Itoh S, Ericsson J, Nishikawa J, Heldin CH, ten Dijke P.

Nucleic Acids Res. 2000 Nov 1;28(21):4291-8.

4.

Identification of novel Smad binding proteins.

Warner DR, Roberts EA, Greene RM, Pisano MM.

Biochem Biophys Res Commun. 2003 Dec 26;312(4):1185-90.

PMID:
14651998
5.
6.

Intracellular dynamics of Smad-mediated TGFbeta signaling.

Greene RM, Nugent P, Mukhopadhyay P, Warner DR, Pisano MM.

J Cell Physiol. 2003 Nov;197(2):261-71.

PMID:
14502566
7.

Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3).

Long J, Wang G, Matsuura I, He D, Liu F.

Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):99-104. Epub 2003 Dec 22.

8.

Casein kinase Iepsilon plays a functional role in the transforming growth factor-beta signaling pathway.

Waddell DS, Liberati NT, Guo X, Frederick JP, Wang XF.

J Biol Chem. 2004 Jul 9;279(28):29236-46. Epub 2004 May 7.

9.

TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300.

Janknecht R, Wells NJ, Hunter T.

Genes Dev. 1998 Jul 15;12(14):2114-9.

10.

Two short segments of Smad3 are important for specific interaction of Smad3 with c-Ski and SnoN.

Mizuide M, Hara T, Furuya T, Takeda M, Kusanagi K, Inada Y, Mori M, Imamura T, Miyazawa K, Miyazono K.

J Biol Chem. 2003 Jan 3;278(1):531-6. Epub 2002 Nov 7.

11.

Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability.

Williams TM, Williams ME, Heaton JH, Gelehrter TD, Innis JW.

Nucleic Acids Res. 2005 Aug 8;33(14):4475-84. Print 2005.

12.

CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription.

Li L, Xin H, Xu X, Huang M, Zhang X, Chen Y, Zhang S, Fu XY, Chang Z.

Mol Cell Biol. 2004 Jan;24(2):856-64.

13.

Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4.

Chou WC, Prokova V, Shiraishi K, Valcourt U, Moustakas A, Hadzopoulou-Cladaras M, Zannis VI, Kardassis D.

Mol Biol Cell. 2003 Mar;14(3):1279-94.

14.
15.

Functional analysis of CBP/p300 in embryonic orofacial mesenchymal cells.

Warner DR, Pisano MM, Greene RM.

J Cell Biochem. 2006 Dec 1;99(5):1374-9.

PMID:
16817232
17.
18.

Physical and functional interaction of SMADs and p300/CBP.

Pouponnot C, Jayaraman L, Massagué J.

J Biol Chem. 1998 Sep 4;273(36):22865-8.

20.

The tumor suppressor p53 abrogates Smad-dependent collagen gene induction in mesenchymal cells.

Ghosh AK, Bhattacharyya S, Varga J.

J Biol Chem. 2004 Nov 12;279(46):47455-63. Epub 2004 Sep 1.

Supplemental Content

Support Center