Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128


Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.

Scholz I, Bückins M, Dolge L, Erlinghagen T, Weth A, Hischen F, Mayer J, Hoffmann S, Riederer M, Riedel M, Baumgartner W.

J Exp Biol. 2010 Apr;213(Pt 7):1115-25. doi: 10.1242/jeb.035618.


The insect-trapping rim of Nepenthes pitchers: surface structure and function.

Bauer U, Federle W.

Plant Signal Behav. 2009 Nov;4(11):1019-23. Epub 2009 Nov 25. Review.


Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana.

Bauer U, Grafe TU, Federle W.

J Exp Bot. 2011 Jun;62(10):3683-92. doi: 10.1093/jxb/err082. Epub 2011 Mar 31.


With a flick of the lid: a novel trapping mechanism in Nepenthes gracilis pitcher plants.

Bauer U, Di Giusto B, Skepper J, Grafe TU, Federle W.

PLoS One. 2012;7(6):e38951. doi: 10.1371/journal.pone.0038951. Epub 2012 Jun 13.


How to catch more prey with less effective traps: explaining the evolution of temporarily inactive traps in carnivorous pitcher plants.

Bauer U, Federle W, Seidel H, Grafe TU, Ioannou CC.

Proc Biol Sci. 2015 Feb 22;282(1801):20142675. doi: 10.1098/rspb.2014.2675.


Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers.

Riedel M, Eichner A, Jetter R.

Planta. 2003 Nov;218(1):87-97. Epub 2003 Jul 19.


Capture mechanism in Palaeotropical pitcher plants (Nepenthaceae) is constrained by climate.

Moran JA, Gray LK, Clarke C, Chin L.

Ann Bot. 2013 Nov;112(7):1279-91. doi: 10.1093/aob/mct195. Epub 2013 Aug 23.


'Insect aquaplaning' on a superhydrophilic hairy surface: how Heliamphora nutans Benth. pitcher plants capture prey.

Bauer U, Scharmann M, Skepper J, Federle W.

Proc Biol Sci. 2012 Dec 19;280(1753):20122569. doi: 10.1098/rspb.2012.2569. Print 2013 Feb 22.


Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants.

Bazile V, Le Moguédec G, Marshall DJ, Gaume L.

Ann Bot. 2015 Mar;115(4):705-16. doi: 10.1093/aob/mcu266. Epub 2015 Feb 11.


The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment.

Gorb EV, Gorb SN.

Beilstein J Nanotechnol. 2011;2:302-10. doi: 10.3762/bjnano.2.35. Epub 2011 Jun 16.


Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from Borneo.

Giusto BD, Grosbois V, Fargeas E, Marshall DJ, Gaume L.

J Biosci. 2008 Mar;33(1):121-36.


Form follows function: morphological diversification and alternative trapping strategies in carnivorous Nepenthes pitcher plants.

Bauer U, Clemente CJ, Renner T, Federle W.

J Evol Biol. 2012 Jan;25(1):90-102. doi: 10.1111/j.1420-9101.2011.02406.x. Epub 2011 Oct 25.


Effect of pitcher age on trapping efficiency and natural prey capture in carnivorous Nepenthes rafflesiana plants.

Bauer U, Willmes C, Federle W.

Ann Bot. 2009 Jun;103(8):1219-26. doi: 10.1093/aob/mcp065. Epub 2009 Mar 22.


Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies.

Moran JA, Hawkins BJ, Gowen BE, Robbins SL.

J Exp Bot. 2010 Mar;61(5):1365-74. doi: 10.1093/jxb/erq004. Epub 2010 Feb 11.


Slippery or sticky? Functional diversity in the trapping strategy of Nepenthes carnivorous plants.

Bonhomme V, Pelloux-Prayer H, Jousselin E, Forterre Y, Labat JJ, Gaume L.

New Phytol. 2011 Jul;191(2):545-54. doi: 10.1111/j.1469-8137.2011.03696.x. Epub 2011 Mar 24.

Supplemental Content

Support Center