Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 221

1.

Lysine acetylation and the bromodomain: a new partnership for signaling.

Yang XJ.

Bioessays. 2004 Oct;26(10):1076-87. Review.

PMID:
15382140
2.

Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain.

Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE.

J Mol Biol. 2000 Dec 1;304(3):355-70.

PMID:
11090279
3.
4.

Structure and acetyl-lysine recognition of the bromodomain.

Mujtaba S, Zeng L, Zhou MM.

Oncogene. 2007 Aug 13;26(37):5521-7. Review.

PMID:
17694091
5.

Bromodomain: an acetyl-lysine binding domain.

Zeng L, Zhou MM.

FEBS Lett. 2002 Feb 20;513(1):124-8. Review.

6.

Acetyllysine-binding and function of bromodomain-containing proteins in chromatin.

Dyson MH, Rose S, Mahadevan LC.

Front Biosci. 2001 Aug 1;6:D853-65. Review.

PMID:
11487465
7.

Multisite protein modification and intramolecular signaling.

Yang XJ.

Oncogene. 2005 Mar 3;24(10):1653-62. Review.

PMID:
15744326
8.

Probing lysine acetylation in proteins: strategies, limitations, and pitfalls of in vitro acetyltransferase assays.

Dormeyer W, Ott M, Schnölzer M.

Mol Cell Proteomics. 2005 Sep;4(9):1226-39. Epub 2005 Jun 2.

9.

Regulation of protein turnover by acetyltransferases and deacetylases.

Sadoul K, Boyault C, Pabion M, Khochbin S.

Biochimie. 2008 Feb;90(2):306-12. Epub 2007 Jul 1. Review.

PMID:
17681659
10.

Polybromo-1-bromodomains bind histone H3 at specific acetyl-lysine positions.

Chandrasekaran R, Thompson M.

Biochem Biophys Res Commun. 2007 Apr 13;355(3):661-6. Epub 2007 Feb 9.

PMID:
17320048
11.

HIV-1 Tat interactions with p300 and PCAF transcriptional coactivators inhibit histone acetylation and neurotrophin signaling through CREB.

Wong K, Sharma A, Awasthi S, Matlock EF, Rogers L, Van Lint C, Skiest DJ, Burns DK, Harrod R.

J Biol Chem. 2005 Mar 11;280(10):9390-9. Epub 2004 Dec 15.

12.

Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.

Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y.

Mol Cell. 2006 Aug;23(4):607-18.

13.

Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities.

Toleman C, Paterson AJ, Whisenhunt TR, Kudlow JE.

J Biol Chem. 2004 Dec 17;279(51):53665-73. Epub 2004 Oct 12.

14.

Crystal structure of the human BRD2 bromodomain: insights into dimerization and recognition of acetylated histone H4.

Nakamura Y, Umehara T, Nakano K, Jang MK, Shirouzu M, Morita S, Uda-Tochio H, Hamana H, Terada T, Adachi N, Matsumoto T, Tanaka A, Horikoshi M, Ozato K, Padmanabhan B, Yokoyama S.

J Biol Chem. 2007 Feb 9;282(6):4193-201. Epub 2006 Dec 5.

15.

The bromodomain: a chromatin browser?

Filetici P, P O, Ballario P.

Front Biosci. 2001 Aug 1;6:D866-76. Review.

PMID:
11487466
16.

Histone acetyl transferases as emerging drug targets.

Dekker FJ, Haisma HJ.

Drug Discov Today. 2009 Oct;14(19-20):942-8. doi: 10.1016/j.drudis.2009.06.008. Epub 2009 Jul 2. Review.

PMID:
19577000
17.

The diversity of lysine-acetylated proteins in Escherichia coli.

Yu BJ, Kim JA, Moon JH, Ryu SE, Pan JG.

J Microbiol Biotechnol. 2008 Sep;18(9):1529-36.

18.

Lysine acetylation: enzymes, bromodomains and links to different diseases.

You L, Nie J, Sun WJ, Zheng ZQ, Yang XJ.

Essays Biochem. 2012;52:1-12. doi: 10.1042/bse0520001. Review.

PMID:
22708559
19.

Lysine acetylation targets protein complexes and co-regulates major cellular functions.

Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M.

Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16.

Supplemental Content

Support Center