Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Growth factor production in human endothelial cells after Chlamydia pneumoniae infection.

Prochnau D, Rödel J, Hartmann M, Straube E, Figulla HR.

Int J Med Microbiol. 2004 Jul;294(1):53-7.

PMID:
15293454
2.

Production of basic fibroblast growth factor and interleukin 6 by human smooth muscle cells following infection with Chlamydia pneumoniae.

Rödel J, Woytas M, Groh A, Schmidt KH, Hartmann M, Lehmann M, Straube E.

Infect Immun. 2000 Jun;68(6):3635-41.

4.

Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae.

Opitz B, Förster S, Hocke AC, Maass M, Schmeck B, Hippenstiel S, Suttorp N, Krüll M.

Circ Res. 2005 Feb 18;96(3):319-26. Epub 2005 Jan 13.

7.

Chlamydia pneumoniae infection of aortic smooth muscle cells reduces platelet-derived growth factor receptor-beta expression.

Rödel J, Lehmann M, Vogelsang H, Straube E.

FEMS Immunol Med Microbiol. 2007 Nov;51(2):363-71. Epub 2007 Aug 29.

8.

Inducible expression of human β-defensin 2 by Chlamydophila pneumoniae in brain capillary endothelial cells.

Tiszlavicz Z, Endrész V, Németh B, Megyeri K, Orosz L, Seprényi G, Mándi Y.

Innate Immun. 2011 Oct;17(5):463-9. doi: 10.1177/1753425910375582. Epub 2010 Jul 20.

PMID:
20647256
9.

Differences in cell activation by Chlamydophila pneumoniae and Chlamydia trachomatis infection in human endothelial cells.

Krüll M, Kramp J, Petrov T, Klucken AC, Hocke AC, Walter C, Schmeck B, Seybold J, Maass M, Ludwig S, Kuipers JG, Suttorp N, Hippenstiel S.

Infect Immun. 2004 Nov;72(11):6615-21.

10.

Microarray analysis of a Chlamydia pneumoniae-infected human epithelial cell line by use of gene ontology hierarchy.

Alvesalo J, Greco D, Leinonen M, Raitila T, Vuorela P, Auvinen P.

J Infect Dis. 2008 Jan 1;197(1):156-62. doi: 10.1086/524142.

PMID:
18171299
11.

Requirement for NF-kappaB in transcriptional activation of monocyte chemotactic protein 1 by Chlamydia pneumoniae in human endothelial cells.

Molestina RE, Miller RD, Lentsch AB, Ramirez JA, Summersgill JT.

Infect Immun. 2000 Jul;68(7):4282-8.

12.

Increased production of matrix metalloproteinases 1 and 3 by smooth muscle cells upon infection with Chlamydia pneumoniae.

Rödel J, Prochnau D, Prager K, Pentcheva E, Hartmann M, Straube E.

FEMS Immunol Med Microbiol. 2003 Sep 22;38(2):159-64.

13.

Heat-inactivated C. pneumoniae organisms are not atherogenic.

Sharma J, Niu Y, Ge J, Pierce GN, Zhong G.

Mol Cell Biochem. 2004 May;260(1-2):147-52.

PMID:
15228096
14.

Divergent modulation of Chlamydia pneumoniae infection cycle in human monocytic and endothelial cells by iron, tryptophan availability and interferon gamma.

Bellmann-Weiler R, Martinz V, Kurz K, Engl S, Feistritzer C, Fuchs D, Rupp J, Paldanius M, Weiss G.

Immunobiology. 2010 Sep-Oct;215(9-10):842-8. doi: 10.1016/j.imbio.2010.05.021. Epub 2010 Jun 4.

PMID:
20646782
15.

Induction of VEGF and MMP-9 expression by toll-like receptor 2/4 in human endothelial cells infected with Chlamydia pneumoniae.

Paolillo R, Iovene MR, Romano Carratelli C, Rizzo A.

Int J Immunopathol Pharmacol. 2012 Apr-Jun;25(2):377-86.

PMID:
22697069
17.
18.
20.

Chlamydophila pneumoniae derived from inclusions late in the infectious cycle induce aponecrosis in human aortic endothelial cells.

Marino J, Stoeckli I, Walch M, Latinovic-Golic S, Sundstroem H, Groscurth P, Ziegler U, Dumrese C.

BMC Microbiol. 2008 Feb 19;8:32. doi: 10.1186/1471-2180-8-32.

Supplemental Content

Support Center