Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.
2.

Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae.

Förster J, Famili I, Palsson BO, Nielsen J.

OMICS. 2003 Summer;7(2):193-202.

PMID:
14506848
3.

The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism.

Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, Nielsen J, Bhumiratana S.

BMC Syst Biol. 2008 Aug 7;2:71. doi: 10.1186/1752-0509-2-71.

4.

Integration of gene expression data into genome-scale metabolic models.

Akesson M, Förster J, Nielsen J.

Metab Eng. 2004 Oct;6(4):285-93.

PMID:
15491858
5.

Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network.

Förster J, Famili I, Fu P, Palsson BØ, Nielsen J.

Genome Res. 2003 Feb;13(2):244-53.

6.

Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network.

Featherstone DE, Broadie K.

Bioessays. 2002 Mar;24(3):267-74.

PMID:
11891763
7.

Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale.

Beyer A, Hollunder J, Nasheuer HP, Wilhelm T.

Mol Cell Proteomics. 2004 Nov;3(11):1083-92.

8.

Genome-scale metabolic models of Saccharomyces cerevisiae.

Nookaew I, Olivares-Hernández R, Bhumiratana S, Nielsen J.

Methods Mol Biol. 2011;759:445-63. doi: 10.1007/978-1-61779-173-4_25. Review.

PMID:
21863502
9.

Transcriptional regulatory networks in Saccharomyces cerevisiae.

Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA.

Science. 2002 Oct 25;298(5594):799-804.

10.
11.

From gene networks to gene function.

Schlitt T, Palin K, Rung J, Dietmann S, Lappe M, Ukkonen E, Brazma A.

Genome Res. 2003 Dec;13(12):2568-76.

12.

Recycling of proteins between the endoplasmic reticulum and Golgi complex.

Pelham HR.

Curr Opin Cell Biol. 1991 Aug;3(4):585-91. Review.

PMID:
1663369
13.
14.

Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production.

Agren R, Otero JM, Nielsen J.

J Ind Microbiol Biotechnol. 2013 Jul;40(7):735-47. doi: 10.1007/s10295-013-1269-3.

PMID:
23608777
15.

Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae.

Jo WJ, Kim JH, Oh E, Jaramillo D, Holman P, Loguinov AV, Arkin AP, Nislow C, Giaever G, Vulpe CD.

BMC Genomics. 2009 Mar 25;10:130. doi: 10.1186/1471-2164-10-130.

16.

Gene regulation in response to overexpression of cytochrome P450 and proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae.

Zimmer T, Ogura A, Takewaka T, Zimmer RM, Ohta A, Takagi M.

Biosci Biotechnol Biochem. 2000 Sep;64(9):1930-6.

17.

Pathway Processor: a tool for integrating whole-genome expression results into metabolic networks.

Grosu P, Townsend JP, Hartl DL, Cavalieri D.

Genome Res. 2002 Jul;12(7):1121-6.

18.

Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae.

North M, Steffen J, Loguinov AV, Zimmerman GR, Vulpe CD, Eide DJ.

PLoS Genet. 2012;8(6):e1002699. doi: 10.1371/journal.pgen.1002699.

19.

The KKXX signal mediates retrieval of membrane proteins from the Golgi to the ER in yeast.

Townsley FM, Pelham HR.

Eur J Cell Biol. 1994 Jun;64(1):211-6. No abstract available.

PMID:
7957309
20.

Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

Wright R, Parrish ML, Cadera E, Larson L, Matson CK, Garrett-Engele P, Armour C, Lum PY, Shoemaker DD.

Yeast. 2003 Jul 30;20(10):881-92.

Items per page

Supplemental Content

Support Center