Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Characterization of three functional high-affinity ammonium transporters in Lotus japonicus with differential transcriptional regulation and spatial expression.

D'Apuzzo E, Rogato A, Simon-Rosin U, El Alaoui H, Barbulova A, Betti M, Dimou M, Katinakis P, Marquez A, Marini AM, Udvardi MK, Chiurazzi M.

Plant Physiol. 2004 Apr;134(4):1763-74. Epub 2004 Apr 9.

2.

Tissue-specific down-regulation of LjAMT1;1 compromises nodule function and enhances nodulation in Lotus japonicus.

Rogato A, D'Apuzzo E, Barbulova A, Omrane S, Stedel C, Simon-Rosin U, Katinakis P, Flemetakis M, Udvardi M, Chiurazzi M.

Plant Mol Biol. 2008 Dec;68(6):585-95. doi: 10.1007/s11103-008-9394-5. Epub 2008 Sep 10.

PMID:
18781388
3.

Functional characterization of an ammonium transporter gene from Lotus japonicus.

Salvemini F, Marini A, Riccio A, Patriarca EJ, Chiurazzi M.

Gene. 2001 May 30;270(1-2):237-43.

PMID:
11404021
4.

Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus.

Simon-Rosin U, Wood C, Udvardi MK.

Plant Mol Biol. 2003 Jan;51(1):99-108.

PMID:
12602894
5.

Characterization of a developmental root response caused by external ammonium supply in Lotus japonicus.

Rogato A, D'Apuzzo E, Barbulova A, Omrane S, Parlati A, Carfagna S, Costa A, Lo Schiavo F, Esposito S, Chiurazzi M.

Plant Physiol. 2010 Oct;154(2):784-95. doi: 10.1104/pp.110.160309. Epub 2010 Aug 5.

6.

Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus.

Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, Tabata S.

DNA Res. 2004 Aug 31;11(4):263-74.

PMID:
15500251
7.

Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane.

Desbrosses G, Kopka C, Ott T, Udvardi MK.

Mol Plant Microbe Interact. 2004 Jul;17(7):789-97.

8.

The cloning and characterization of two ammonium transporters in the salt-resistant green alga, Dunaliella viridis.

Song T, Gao Q, Xu Z, Song R.

Mol Biol Rep. 2011 Oct;38(7):4797-804. doi: 10.1007/s11033-010-0621-1. Epub 2010 Dec 14.

PMID:
21153924
9.

Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots.

Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N.

Plant Cell. 1999 May;11(5):937-48.

10.

The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules.

Krusell L, Krause K, Ott T, Desbrosses G, Krämer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N, Stougaard J, Kawaguchi M, Miyamoto A, Suganuma N, Udvardi MK.

Plant Cell. 2005 May;17(5):1625-36. Epub 2005 Apr 1.

11.

The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters.

Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wirén N.

Plant Cell. 2007 Aug;19(8):2636-52. Epub 2007 Aug 10.

12.

Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.).

Gu R, Duan F, An X, Zhang F, von Wirén N, Yuan L.

Plant Cell Physiol. 2013 Sep;54(9):1515-24. doi: 10.1093/pcp/pct099. Epub 2013 Jul 5.

PMID:
23832511
13.

The multiple plant response to high ammonium conditions: the Lotus japonicus AMT1; 3 protein acts as a putative transceptor.

Rogato A, D'Apuzzo E, Chiurazzi M.

Plant Signal Behav. 2010 Dec;5(12):1594-6. Epub 2010 Dec 1.

14.

Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules.

Efrose RC, Flemetakis E, Sfichi L, Stedel C, Kouri ED, Udvardi MK, Kotzabasis K, Katinakis P.

Planta. 2008 Jun;228(1):37-49. doi: 10.1007/s00425-008-0717-1. Epub 2008 Mar 5.

PMID:
18320213
15.

Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes.

Gaur VS, Singh US, Gupta AK, Kumar A.

Mol Biol Rep. 2012 Mar;39(3):2233-41. doi: 10.1007/s11033-011-0972-2. Epub 2011 Jun 16.

PMID:
21678052
16.

Induction and spatial organization of polyamine biosynthesis during nodule development in Lotus japonicus.

Flemetakis E, Efrose RC, Desbrosses G, Dimou M, Delis C, Aivalakis G, Udvardi MK, Katinakis P.

Mol Plant Microbe Interact. 2004 Dec;17(12):1283-93.

17.

Gene characterization and transcription analysis of two new ammonium transporters in pear rootstock (Pyrus betulaefolia).

Li H, Han JL, Chang YH, Lin J, Yang QS.

J Plant Res. 2016 Jul;129(4):737-48. doi: 10.1007/s10265-016-0799-y. Epub 2016 Mar 4.

PMID:
26943161
18.

Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane.

Sohlenkamp C, Wood CC, Roeb GW, Udvardi MK.

Plant Physiol. 2002 Dec;130(4):1788-96.

19.

Knockdown of LjIPT3 influences nodule development in Lotus japonicus.

Chen Y, Chen W, Li X, Jiang H, Wu P, Xia K, Yang Y, Wu G.

Plant Cell Physiol. 2014 Jan;55(1):183-93. doi: 10.1093/pcp/pct171. Epub 2013 Nov 26.

PMID:
24285753
20.

Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato.

von Wirén N, Lauter FR, Ninnemann O, Gillissen B, Walch-Liu P, Engels C, Jost W, Frommer WB.

Plant J. 2000 Jan;21(2):167-75.

Supplemental Content

Support Center