Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Yeast genome-wide drug-induced haploinsufficiency screen to determine drug mode of action.

Baetz K, McHardy L, Gable K, Tarling T, Rebérioux D, Bryan J, Andersen RJ, Dunn T, Hieter P, Roberge M.

Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4525-30. Epub 2004 Mar 15.

2.

Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis.

Kemmer D, McHardy LM, Hoon S, Rebérioux D, Giaever G, Nislow C, Roskelley CD, Roberge M.

BMC Microbiol. 2009 Jan 14;9:9. doi: 10.1186/1471-2180-9-9.

3.

Chemical-genetic approaches for exploring the mode of action of natural products.

Lopez A, Parsons AB, Nislow C, Giaever G, Boone C.

Prog Drug Res. 2008;66:237, 239-71. Review.

PMID:
18416308
4.

A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae.

Singh-Babak SD, Shekhar T, Smith AM, Giaever G, Nislow C, Cowen LE.

Mol Biosyst. 2012 Oct;8(10):2575-84. doi: 10.1039/c2mb25107h.

PMID:
22751784
5.

Genetic Screens for Determination of Mechanism of Action.

Gay-Andrieu F, Alex D, Calderone R.

Methods Mol Biol. 2016;1356:165-72. doi: 10.1007/978-1-4939-3052-4_12.

PMID:
26519072
6.

A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae.

Arita A, Zhou X, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz A, Klein CB, Dai W, Begley TJ, Costa M.

BMC Genomics. 2009 Nov 15;10:524. doi: 10.1186/1471-2164-10-524.

7.

Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action.

Kapitzky L, Beltrao P, Berens TJ, Gassner N, Zhou C, Wüster A, Wu J, Babu MM, Elledge SJ, Toczyski D, Lokey RS, Krogan NJ.

Mol Syst Biol. 2010 Dec 21;6:451. doi: 10.1038/msb.2010.107.

8.

Defining drug targets in yeast haploinsufficiency screens: application to human translational pharmacology.

Roberge M.

Sci Signal. 2008 Aug 26;1(34):pt5. doi: 10.1126/scisignal.134pt5.

PMID:
18728306
9.

Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae.

Troppens DM, Dmitriev RI, Papkovsky DB, O'Gara F, Morrissey JP.

FEMS Yeast Res. 2013 May;13(3):322-34. doi: 10.1111/1567-1364.12037. Epub 2013 Mar 5.

11.

Characterization of a novel, potent, and specific inhibitor of serine palmitoyltransferase.

Zweerink MM, Edison AM, Wells GB, Pinto W, Lester RL.

J Biol Chem. 1992 Dec 15;267(35):25032-8.

12.

Synergy of the antibiotic colistin with echinocandin antifungals in Candida species.

Zeidler U, Bougnoux ME, Lupan A, Helynck O, Doyen A, Garcia Z, Sertour N, Clavaud C, Munier-Lehmann H, Saveanu C, d'Enfert C.

J Antimicrob Chemother. 2013 Jun;68(6):1285-96. doi: 10.1093/jac/dks538. Epub 2013 Feb 1.

13.

The haploinsufficiency profile of α-hederin suggests a caspofungin-like antifungal mode of action.

Prescott TA, Rigby LP, Veitch NC, Simmonds MS.

Phytochemistry. 2014 May;101:116-20. doi: 10.1016/j.phytochem.2014.01.022. Epub 2014 Feb 22.

PMID:
24569176
14.

Chemical genetic and chemogenomic analysis in yeast.

Coorey NV, Sampson LD, Barber JM, Bellows DS.

Methods Mol Biol. 2014;1205:169-86. doi: 10.1007/978-1-4939-1363-3_11.

PMID:
25213245
15.

Profiling of the effects of antifungal agents on yeast cells based on morphometric analysis.

Gebre AA, Okada H, Kim C, Kubo K, Ohnuki S, Ohya Y.

FEMS Yeast Res. 2015 Aug;15(5):fov040. doi: 10.1093/femsyr/fov040. Epub 2015 Jun 10.

PMID:
26066554
16.

Systematic analysis of yeast strains with possible defects in lipid metabolism.

Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G, Cattel L, Milla P, Rocco F, Conzelmann A, Vionnet C, Kelly DE, Kelly S, Schweizer E, Schüller HJ, Hojad U, Greiner E, Finger K.

Yeast. 1999 May;15(7):601-14.

17.

Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans.

Sigle HC, Thewes S, Niewerth M, Korting HC, Schäfer-Korting M, Hube B.

J Antimicrob Chemother. 2005 May;55(5):663-73. Epub 2005 Mar 24.

PMID:
15790671
18.

Chemogenomic profiling: identifying the functional interactions of small molecules in yeast.

Giaever G, Flaherty P, Kumm J, Proctor M, Nislow C, Jaramillo DF, Chu AM, Jordan MI, Arkin AP, Davis RW.

Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):793-8. Epub 2004 Jan 12.

19.

A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii).

Thevissen K, Cammue BP, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KK, Van Even F, Parret AH, Broekaert WF.

Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9531-6.

20.

Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.

Toume M, Tani M.

FEMS Microbiol Lett. 2014 Sep;358(1):64-71. doi: 10.1111/1574-6968.12535. Epub 2014 Jul 29.

Supplemental Content

Support Center