Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Midkine, a heparin-binding cytokine, plays key roles in intraperitoneal adhesions.

Inoh K, Muramatsu H, Ochiai K, Torii S, Muramatsu T.

Biochem Biophys Res Commun. 2004 Apr 23;317(1):108-13.

PMID:
15047154
2.

The role of midkine and pleiotrophin in liver regeneration.

Ochiai K, Muramatsu H, Yamamoto S, Ando H, Muramatsu T.

Liver Int. 2004 Oct;24(5):484-91.

PMID:
15482347
3.

Midkine, a heparin-binding growth factor, is fundamentally involved in the pathogenesis of rheumatoid arthritis.

Maruyama K, Muramatsu H, Ishiguro N, Muramatsu T.

Arthritis Rheum. 2004 May;50(5):1420-9.

4.

Midkine is involved in neutrophil infiltration into the tubulointerstitium in ischemic renal injury.

Sato W, Kadomatsu K, Yuzawa Y, Muramatsu H, Hotta N, Matsuo S, Muramatsu T.

J Immunol. 2001 Sep 15;167(6):3463-9.

5.

The role of neutrophils in the formation of peritoneal adhesions.

Vural B, Cantürk NZ, Esen N, Solakoglu S, Cantürk Z, Kirkali G, Sökmensüer C.

Hum Reprod. 1999 Jan;14(1):49-54.

6.

Midkine, a heparin-binding growth factor, is expressed in neural precursor cells and promotes their growth.

Zou P, Muramatsu H, Miyata T, Muramatsu T.

J Neurochem. 2006 Dec;99(6):1470-9.

PMID:
17230638
7.

Remodelling of adipose tissue during experimental omental adhesion formation.

Wilkosz S, Epstein J, de Giorgio-Miller A, McLean W, Ireland G, Herrick S.

Br J Surg. 2008 Mar;95(3):387-96. doi: 10.1002/bjs.6073.

PMID:
18278783
8.
9.

Role of plasminogen activators in peritoneal adhesion formation.

Sulaiman H, Dawson L, Laurent GJ, Bellingan GJ, Herrick SE.

Biochem Soc Trans. 2002 Apr;30(2):126-31. Review.

PMID:
12023839
10.

TGF-beta system: the principal profibrotic mediator of peritoneal adhesion formation.

Chegini N.

Semin Reprod Med. 2008 Jul;26(4):298-312. doi: 10.1055/s-0028-1082388. Review.

PMID:
18756407
11.

Female infertility in mice deficient in midkine and pleiotrophin, which form a distinct family of growth factors.

Muramatsu H, Zou P, Kurosawa N, Ichihara-Tanaka K, Maruyama K, Inoh K, Sakai T, Chen L, Sato M, Muramatsu T.

Genes Cells. 2006 Dec;11(12):1405-17.

12.

Experimental model of peritoneal adhesion formation.

Skal'skiy SV, Shamray GA, Dolgich TI, Reys BA, Sokolova TF, Kotchetov AM, Priticina TV.

Bull Exp Biol Med. 2007 Oct;144(4):588-90.

PMID:
18642719
13.
14.

Mast cells facilitate local VEGF release as an early event in the pathogenesis of postoperative peritoneal adhesions.

Cahill RA, Wang JH, Soohkai S, Redmond HP.

Surgery. 2006 Jul;140(1):108-12.

PMID:
16857448
15.

Observations on the pathogenesis of peritoneal adhesions: a light and electron microscopical study.

Milligan DW, Raftery AT.

Br J Surg. 1974 Apr;61(4):274-80. No abstract available.

PMID:
4832632
16.

Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases.

Muramatsu T.

Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(4):410-25. Review.

17.

Pathogenesis of Intra-abdominal and pelvic adhesion development.

Imudia AN, Kumar S, Saed GM, Diamond MP.

Semin Reprod Med. 2008 Jul;26(4):289-97. doi: 10.1055/s-0028-1082387. Review.

PMID:
18756406
18.

Peritoneal molecular environment, adhesion formation and clinical implication.

Chegini N.

Front Biosci. 2002 Apr 1;7:e91-115. Review.

PMID:
11897550
19.

Postoperative adhesions: from formation to prevention.

Alpay Z, Saed GM, Diamond MP.

Semin Reprod Med. 2008 Jul;26(4):313-21. doi: 10.1055/s-0028-1082389. Review.

PMID:
18756408
20.

Midkine as a molecular target: comparison of effects of chondroitin sulfate E and siRNA.

Yamamoto H, Muramatsu H, Nakanishi T, Natori Y, Sakuma S, Ishiguro N, Muramatsu T.

Biochem Biophys Res Commun. 2006 Dec 29;351(4):915-9.

PMID:
17094944
Items per page

Supplemental Content

Support Center