Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 18

1.
2.

Does root glutamine synthetase control plant biomass production in lotus japonicus L.?

Limami A, Phillipson B, Ameziane R, Pernollet N, Jiang Q, Roy R, Deleens E, Chaumont-Bonnet M, Gresshoff PM, Hirel B.

Planta. 1999 Oct;209(4):495-502.

PMID:
10550631
3.

A set of Lotus japonicus Gifu x Lotus burttii recombinant inbred lines facilitates map-based cloning and QTL mapping.

Sandal N, Jin H, Rodriguez-Navarro DN, Temprano F, Cvitanich C, Brachmann A, Sato S, Kawaguchi M, Tabata S, Parniske M, Ruiz-Sainz JE, Andersen SU, Stougaard J.

DNA Res. 2012;19(4):317-23. doi: 10.1093/dnares/dss014. Epub 2012 May 22.

4.

Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes.

Richard-Molard C, Krapp A, Brun F, Ney B, Daniel-Vedele F, Chaillou S.

J Exp Bot. 2008;59(4):779-91. doi: 10.1093/jxb/erm363. Epub 2008 Feb 27.

PMID:
18304979
5.

The characteristic high sulfate content in Brassica oleracea is controlled by the expression and activity of sulfate transporters.

Koralewska A, Posthumus FS, Stuiver CE, Buchner P, Hawkesford MJ, De Kok LJ.

Plant Biol (Stuttg). 2007 Sep;9(5):654-61.

PMID:
17853365
6.

Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth.

Xiong ZT, Zhao F, Li MJ.

Environ Toxicol. 2006 Apr;21(2):147-53.

PMID:
16528690
7.

[Effect of NO3- supply on lateral root growth in maize plants].

Guo YF, Mi GH, Chen FJ, Zhang FS.

Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2005 Feb;31(1):90-6. Chinese.

PMID:
15692184
8.

High-resolution genetic maps of Lotus japonicus and L. burttii based on re-sequencing of recombinant inbred lines.

Shah N, Hirakawa H, Kusakabe S, Sandal N, Stougaard J, Schierup MH, Sato S, Andersen SU.

DNA Res. 2016 Oct 1;23(5):487-494. doi: 10.1093/dnares/dsw033.

9.

Two anion transporters AtClCa and AtClCe fulfil interconnecting but not redundant roles in nitrate assimilation pathways.

Monachello D, Allot M, Oliva S, Krapp A, Daniel-Vedele F, Barbier-Brygoo H, Ephritikhine G.

New Phytol. 2009;183(1):88-94. doi: 10.1111/j.1469-8137.2009.02837.x. Epub 2009 Apr 23.

10.

Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.

Chen YH, Wu XM, Ling HQ, Yang WC.

Cell Res. 2006 Oct;16(10):830-40. Epub 2006 Oct 10.

11.

Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr.

Xiong ZT, Liu C, Geng B.

Ecotoxicol Environ Saf. 2006 Jul;64(3):273-80. Epub 2006 Apr 17.

PMID:
16616956
12.

Nitrate reductase activity is required for nitrate uptake into fungal but not plant cells.

Unkles SE, Wang R, Wang Y, Glass AD, Crawford NM, Kinghorn JR.

J Biol Chem. 2004 Jul 2;279(27):28182-6. Epub 2004 May 3.

13.

Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture.

Weng G, Wu L, Wang Z, Luo Y, Christie P.

Environ Int. 2005 Aug;31(6):880-4.

PMID:
16005517
14.

Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase.

Kruse J, Kopriva S, Hänsch R, Krauss GJ, Mendel RR, Rennenberg H.

Plant Biol (Stuttg). 2007 Sep;9(5):638-46.

PMID:
17853363
15.

Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress.

Pajuelo E, Carrasco JA, Romero LC, Chamber MA, Gotor C.

Plant Biol (Stuttg). 2007 Sep;9(5):672-81.

PMID:
17853367
16.

Gene structure and expression of the high-affinity nitrate transport system in rice roots.

Cai C, Wang JY, Zhu YG, Shen QR, Li B, Tong YP, Li ZS.

J Integr Plant Biol. 2008 Apr;50(4):443-51. doi: 10.1111/j.1744-7909.2008.00642.x.

PMID:
18713378
17.

Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover.

Khaosaad T, Krenn L, Medjakovic S, Ranner A, Lössl A, Nell M, Jungbauer A, Vierheilig H.

J Plant Physiol. 2008 Jul 31;165(11):1161-7. Epub 2007 Dec 26.

PMID:
18160126
18.

The increase of photosynthetic carbon assimilation as a mechanism of adaptation to low temperature in Lotus japonicus.

Calzadilla PI, Vilas JM, Escaray FJ, Unrein F, Carrasco P, Ruiz OA.

Sci Rep. 2019 Jan 29;9(1):863. doi: 10.1038/s41598-018-37165-7.

Supplemental Content

Support Center