Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.

Probabilistic segmentation of white matter lesions in MR imaging.

Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der Grond J.

Neuroimage. 2004 Mar;21(3):1037-44.

PMID:
15006671
2.

Automatic segmentation of different-sized white matter lesions by voxel probability estimation.

Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der Grond J.

Med Image Anal. 2004 Sep;8(3):205-15.

PMID:
15450216
3.

Probabilistic segmentation of brain tissue in MR imaging.

Anbeek P, Vincken KL, van Bochove GS, van Osch MJ, van der Grond J.

Neuroimage. 2005 Oct 1;27(4):795-804.

PMID:
16019235
4.

Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.

Anbeek P, Vincken KL, Groenendaal F, Koeman A, van Osch MJ, van der Grond J.

Pediatr Res. 2008 Feb;63(2):158-63.

PMID:
18091357
5.

White matter lesion extension to automatic brain tissue segmentation on MRI.

de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, Breteler MM, Niessen WJ.

Neuroimage. 2009 May 1;45(4):1151-61. doi: 10.1016/j.neuroimage.2009.01.011.

PMID:
19344687
6.

A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images.

Khayati R, Vafadust M, Towhidkhah F, Nabavi SM.

Comput Med Imaging Graph. 2008 Mar;32(2):124-33. Epub 2007 Dec 4.

PMID:
18055174
7.

Increased differentiation of intracranial white matter lesions by multispectral 3D-tissue segmentation: preliminary results.

Mohamed FB, Vinitski S, Gonzalez CF, Faro SH, Lublin FA, Knobler R, Gutierrez JE.

Magn Reson Imaging. 2001 Feb;19(2):207-18.

PMID:
11358659
8.

Automated segmentation and measurement of global white matter lesion volume in patients with multiple sclerosis.

Alfano B, Brunetti A, Larobina M, Quarantelli M, Tedeschi E, Ciarmiello A, Covelli EM, Salvatore M.

J Magn Reson Imaging. 2000 Dec;12(6):799-807.

PMID:
11105017
9.

Segmentation of age-related white matter changes in a clinical multi-center study.

Dyrby TB, Rostrup E, Baaré WF, van Straaten EC, Barkhof F, Vrenken H, Ropele S, Schmidt R, Erkinjuntti T, Wahlund LO, Pantoni L, Inzitari D, Paulson OB, Hansen LK, Waldemar G; LADIS study group..

Neuroimage. 2008 Jun;41(2):335-45. doi: 10.1016/j.neuroimage.2008.02.024. Epub 2008 Feb 29.

PMID:
18394928
10.

Fully automatic segmentation of white matter hyperintensities in MR images of the elderly.

Admiraal-Behloul F, van den Heuvel DM, Olofsen H, van Osch MJ, van der Grond J, van Buchem MA, Reiber JH.

Neuroimage. 2005 Nov 15;28(3):607-17. Epub 2005 Aug 29.

PMID:
16129626
11.

Automatic segmentation and classification of multiple sclerosis in multichannel MRI.

Akselrod-Ballin A, Galun M, Gomori JM, Filippi M, Valsasina P, Basri R, Brandt A.

IEEE Trans Biomed Eng. 2009 Oct;56(10):2461-9. doi: 10.1109/TBME.2008.926671.

PMID:
19758850
12.

Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification.

Vrooman HA, Cocosco CA, van der Lijn F, Stokking R, Ikram MA, Vernooij MW, Breteler MM, Niessen WJ.

Neuroimage. 2007 Aug 1;37(1):71-81. Epub 2007 May 21.

PMID:
17572111
13.

Multi-level adaptive segmentation of multi-parameter MR brain images.

Zavaljevski A, Dhawan AP, Gaskil M, Ball W, Johnson JD.

Comput Med Imaging Graph. 2000 Mar-Apr;24(2):87-98.

PMID:
10767588
14.

Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI.

Wu Y, Warfield SK, Tan IL, Wells WM 3rd, Meier DS, van Schijndel RA, Barkhof F, Guttmann CR.

Neuroimage. 2006 Sep;32(3):1205-15. Epub 2006 Jun 22.

PMID:
16797188
15.

Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model.

Khayati R, Vafadust M, Towhidkhah F, Nabavi M.

Comput Biol Med. 2008 Mar;38(3):379-90. doi: 10.1016/j.compbiomed.2007.12.005. Epub 2008 Feb 11.

PMID:
18262511
16.

Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging.

Nelson F, Poonawalla AH, Hou P, Huang F, Wolinsky JS, Narayana PA.

AJNR Am J Neuroradiol. 2007 Oct;28(9):1645-9. Epub 2007 Sep 20.

17.

Diffusion-weighted MR of the brain: methodology and clinical application.

Mascalchi M, Filippi M, Floris R, Fonda C, Gasparotti R, Villari N.

Radiol Med. 2005 Mar;109(3):155-97. Review. English, Italian.

PMID:
15775887
18.

Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images.

Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N.

Neuroimage. 2011 Jul 15;57(2):378-90. doi: 10.1016/j.neuroimage.2011.03.080. Epub 2011 Apr 8.

PMID:
21497655
19.

Twenty new digital brain phantoms for creation of validation image data bases.

Aubert-Broche B, Griffin M, Pike GB, Evans AC, Collins DL.

IEEE Trans Med Imaging. 2006 Nov;25(11):1410-6.

PMID:
17117770
20.

Automated detection and characterization of multiple sclerosis lesions in brain MR images.

Goldberg-Zimring D, Achiron A, Miron S, Faibel M, Azhari H.

Magn Reson Imaging. 1998 Apr;16(3):311-8.

PMID:
9621972

Supplemental Content

Support Center