Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Physiological implications of class IIa bacteriocin resistance in Listeria monocytogenes strains.

Vadyvaloo V, Snoep JL, Hastings JW, Rautenbach M.

Microbiology. 2004 Feb;150(Pt 2):335-40.

PMID:
14766911
2.

Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains.

Vadyvaloo V, Arous S, Gravesen A, Héchard Y, Chauhan-Haubrock R, Hastings JW, Rautenbach M.

Microbiology. 2004 Sep;150(Pt 9):3025-33.

PMID:
15347760
3.

High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes.

Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jänsch L, Héchard Y, Hastings JW, Knøchel S.

Microbiology. 2002 Aug;148(Pt 8):2361-9.

PMID:
12177330
4.

Complex phenotypic and genotypic responses of Listeria monocytogenes strains exposed to the class IIa bacteriocin sakacin P.

Tessema GT, Møretrø T, Kohler A, Axelsson L, Naterstad K.

Appl Environ Microbiol. 2009 Nov;75(22):6973-80. doi: 10.1128/AEM.00608-09.

5.

Global transcriptional analysis of spontaneous sakacin P-resistant mutant strains of Listeria monocytogenes during growth on different sugars.

Tessema GT, Møretrø T, Snipen L, Axelsson L, Naterstad K.

PLoS One. 2011 Jan 6;6(1):e16192. doi: 10.1371/journal.pone.0016192.

6.
7.

A sigma(54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105.

Dalet K, Cenatiempo Y, Cossart P, Héchard Y; European Listeria Genome Consortium..

Microbiology. 2001 Dec;147(Pt 12):3263-9.

PMID:
11739758
8.
9.

Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system.

Kjos M, Nes IF, Diep DB.

Appl Environ Microbiol. 2011 May;77(10):3335-42. doi: 10.1128/AEM.02602-10.

10.

Involvement of the mpo operon in resistance to class IIa bacteriocins in Listeria monocytogenes.

Arous S, Dalet K, Héchard Y.

FEMS Microbiol Lett. 2004 Sep 1;238(1):37-41.

11.

Identification of a new molecular target of class IIa bacteriocins in Listeria monocytogenes EGDe.

Calvez S, Prévost H, Drider D.

Folia Microbiol (Praha). 2008;53(5):417-22. doi: 10.1007/s12223-008-0063-5.

PMID:
19085076
13.

The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytogenes single cells.

Nielsen DS, Cho GS, Hanak A, Huch M, Franz CM, Arneborg N.

Int J Food Microbiol. 2010 Jul 31;141 Suppl 1:S53-9. doi: 10.1016/j.ijfoodmicro.2010.03.040.

PMID:
20447709
14.

Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes.

Gravesen A, Jydegaard Axelsen AM, Mendes da Silva J, Hansen TB, Knøchel S.

Appl Environ Microbiol. 2002 Feb;68(2):756-64.

15.

The contribution of bacteriocin to inhibition of Listeria monocytogenes by Carnobacterium piscicola strains in cold-smoked salmon systems.

Nilsson L, Ng YY, Christiansen JN, Jørgensen BL, Grótinum D, Gram L.

J Appl Microbiol. 2004;96(1):133-43.

16.
17.

Multiple characterizations of Listeria monocytogenes sensitive and insensitive variants to divergicin M35, a new pediocin-like bacteriocin.

Naghmouchi K, Drider D, Kheadr E, Lacroix C, Prévost H, Fliss I.

J Appl Microbiol. 2006;100(1):29-39.

18.

Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food.

Hartmann HA, Wilke T, Erdmann R.

Int J Food Microbiol. 2011 Mar 30;146(2):192-9. doi: 10.1016/j.ijfoodmicro.2011.02.031.

PMID:
21411169
19.

Class I/Class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes.

Naghmouchi K, Kheadr E, Lacroix C, Fliss I.

Food Microbiol. 2007 Oct-Dec;24(7-8):718-27.

PMID:
17613369
Items per page

Supplemental Content

Support Center