Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

The role of glutathione in yeast dehydration tolerance.

Espindola Ade S, Gomes DS, Panek AD, Eleutherio EC.

Cryobiology. 2003 Dec;47(3):236-41.

PMID:
14697735
2.

Glutathione is necessary to ensure benefits of calorie restriction during ageing in Saccharomyces cerevisiae.

Mannarino SC, Amorim MA, Pereira MD, Moradas-Ferreira P, Panek AD, Costa V, Eleutherio EC.

Mech Ageing Dev. 2008 Dec;129(12):700-5. doi: 10.1016/j.mad.2008.09.001. Epub 2008 Sep 18.

PMID:
18840459
3.

Vacuolar compartmentation of the cadmium-glutathione complex protects Saccharomyces cerevisiae from mutagenesis.

Adamis PD, Panek AD, Eleutherio EC.

Toxicol Lett. 2007 Aug 30;173(1):1-7. Epub 2007 Jun 14.

PMID:
17644279
4.
5.

Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae.

Lushchak VI, Gospodaryov DV.

Cell Biol Int. 2005 Mar;29(3):187-92.

PMID:
15893481
6.

Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae.

Izawa S, Maeda K, Miki T, Mano J, Inoue Y, Kimura A.

Biochem J. 1998 Mar 1;330 ( Pt 2):811-7.

8.

The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae.

França MB, Panek AD, Eleutherio EC.

Cell Stress Chaperones. 2005 Autumn;10(3):167-70.

9.

Cyclic strain modulates resistance to oxidant stress by increasing G6PDH expression in smooth muscle cells.

Leopold JA, Loscalzo J.

Am J Physiol Heart Circ Physiol. 2000 Nov;279(5):H2477-85.

10.

Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae.

Basu U, Southron JL, Stephens JL, Taylor GJ.

Mol Genet Genomics. 2004 Jun;271(5):627-37. Epub 2004 May 7.

PMID:
15133656
11.

Glutathione-glutathione reductase system and lipid peroxidation in Saccharomyces cerevisiae under alcohol stress.

Gupta S, Singh B, Sharma SC.

Acta Microbiol Immunol Hung. 1996;43(1):33-8.

PMID:
8806941
12.

Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by H2O2 during growth of Saccharomyces cerevisiae.

Mariani D, Mathias CJ, da Silva CG, Herdeiro Rda S, Pereira R, Panek AD, Eleutherio EC, Pereira MD.

Redox Rep. 2008;13(6):246-54. doi: 10.1179/135100008X309028.

PMID:
19017464
13.

The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain.

Lee JC, Straffon MJ, Jang TY, Higgins VJ, Grant CM, Dawes IW.

FEMS Yeast Res. 2001 Apr;1(1):57-65.

14.

Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia.

Auchère F, Santos R, Planamente S, Lesuisse E, Camadro JM.

Hum Mol Genet. 2008 Sep 15;17(18):2790-802. doi: 10.1093/hmg/ddn178. Epub 2008 Jun 18.

PMID:
18562474
15.
16.

Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase.

Costa V, Reis E, Quintanilha A, Moradas-Ferreira P.

Arch Biochem Biophys. 1993 Feb 1;300(2):608-14.

PMID:
8434941
17.

Chromate sensitivity in fission yeast is caused by increased glutathione reductase activity and peroxide overproduction.

Pesti M, Gazdag Z, Emri T, Farkas N, Koósz Z, Belágyi J, Pócsi I.

J Basic Microbiol. 2002;42(6):408-19.

PMID:
12442303
19.

Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.

Menezes RA, Amaral C, Batista-Nascimento L, Santos C, Ferreira RB, Devaux F, Eleutherio EC, Rodrigues-Pousada C.

Biochem J. 2008 Sep 1;414(2):301-11. doi: 10.1042/BJ20071537.

PMID:
18439143
20.

Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.

Garre E, Raginel F, Palacios A, Julien A, Matallana E.

Int J Food Microbiol. 2010 Jan 1;136(3):295-303. doi: 10.1016/j.ijfoodmicro.2009.10.018. Epub 2009 Oct 28.

PMID:
19914726

Supplemental Content

Support Center