Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85


Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways.

Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C.

Nat Biotechnol. 2004 Jan;22(1):62-9. Epub 2003 Dec 7.


Chemical-genetic approaches for exploring the mode of action of natural products.

Lopez A, Parsons AB, Nislow C, Giaever G, Boone C.

Prog Drug Res. 2008;66:237, 239-71. Review.


Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug-target pathways.

Han S, Kim D.

PLoS Comput Biol. 2008 Aug 29;4(8):e1000162. doi: 10.1371/journal.pcbi.1000162.


Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast.

Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost RL, Ho CH, Wang J, Ketela T, Brenner C, Brill JA, Fernandez GE, Lorenz TC, Payne GS, Ishihara S, Ohya Y, Andrews B, Hughes TR, Frey BJ, Graham TR, Andersen RJ, Boone C.

Cell. 2006 Aug 11;126(3):611-25.


Protein sorting in yeast: the role of the vacuolar proton-translocating ATPase.

Kane PM, Yamashiro CT, Rothman JH, Stevens TH.

J Cell Sci Suppl. 1989;11:161-78. Review.


Studying phospholipid metabolism using yeast systematic and chemical genetics.

Fairn GD, McMaster CR.

Methods. 2005 Jun;36(2):102-8.


VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase.

Hirata R, Graham LA, Takatsuki A, Stevens TH, Anraku Y.

J Biol Chem. 1997 Feb 21;272(8):4795-803.


High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions.

Hoepfner D, Helliwell SB, Sadlish H, Schuierer S, Filipuzzi I, Brachat S, Bhullar B, Plikat U, Abraham Y, Altorfer M, Aust T, Baeriswyl L, Cerino R, Chang L, Estoppey D, Eichenberger J, Frederiksen M, Hartmann N, Hohendahl A, Knapp B, Krastel P, Melin N, Nigsch F, Oakeley EJ, Petitjean V, Petersen F, Riedl R, Schmitt EK, Staedtler F, Studer C, Tallarico JA, Wetzel S, Fishman MC, Porter JA, Movva NR.

Microbiol Res. 2014 Feb-Mar;169(2-3):107-20. doi: 10.1016/j.micres.2013.11.004. Epub 2013 Dec 1.


A yeast cell-based system for screening Candida glabrata multidrug resistance reversal agents and selection of loss-of-function pdr1 mutants.

Goffa E, Bialkova A, Batova M, Dzugasova V, Subik J.

FEMS Yeast Res. 2011 Mar;11(2):155-9. doi: 10.1111/j.1567-1364.2010.00702.x. Epub 2010 Dec 3.


A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae.

Arita A, Zhou X, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz A, Klein CB, Dai W, Begley TJ, Costa M.

BMC Genomics. 2009 Nov 15;10:524. doi: 10.1186/1471-2164-10-524.


Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe.

Baryshnikova A, Costanzo M, Dixon S, Vizeacoumar FJ, Myers CL, Andrews B, Boone C.

Methods Enzymol. 2010;470:145-79. doi: 10.1016/S0076-6879(10)70007-0. Epub 2010 Mar 1.


A novel family of yeast chaperons involved in the distribution of V-ATPase and other membrane proteins.

Cohen A, Perzov N, Nelson H, Nelson N.

J Biol Chem. 1999 Sep 17;274(38):26885-93.


The cellular biology of proton-motive force generation by V-ATPases.

Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H.

J Exp Biol. 2000 Jan;203(Pt 1):89-95. Review.


Construction of multidrug-sensitive yeast with high sporulation efficiency.

Chinen T, Ota Y, Nagumo Y, Masumoto H, Usui T.

Biosci Biotechnol Biochem. 2011;75(8):1588-93. Epub 2011 Aug 7.

Supplemental Content

Support Center