Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 76

1.
2.
3.

Function of tubulin binding proteins in vivo.

Fleming JA, Vega LR, Solomon F.

Genetics. 2000 Sep;156(1):69-80.

4.

Protection from free beta-tubulin by the beta-tubulin binding protein Rbl2p.

Abruzzi KC, Smith A, Chen W, Solomon F.

Mol Cell Biol. 2002 Jan;22(1):138-47.

5.

Model for the yeast cofactor A-beta-tubulin complex based on computational docking and mutagensis.

You L, Gillilan R, Huffaker TC.

J Mol Biol. 2004 Aug 27;341(5):1343-54.

PMID:
15321725
6.

Tubulin subunits exist in an activated conformational state generated and maintained by protein cofactors.

Tian G, Lewis SA, Feierbach B, Stearns T, Rommelaere H, Ampe C, Cowan NJ.

J Cell Biol. 1997 Aug 25;138(4):821-32.

7.

A novel protein complex promoting formation of functional alpha- and gamma-tubulin.

Geissler S, Siegers K, Schiebel E.

EMBO J. 1998 Feb 16;17(4):952-66.

8.

Regulation of tubulin polypeptides and microtubule function: Luv1p [correction of Rki1p] interacts with the beta-tubulin binding protein Rbl2p.

Smith AM, Archer JE, Solomon F.

Chromosoma. 1998 Dec;107(6-7):471-8. Erratum in: Chromosoma 1999 Apr;108(1):72.

PMID:
9914379
9.

Modulation of tubulin polypeptide ratios by the yeast protein Pac10p.

Alvarez P, Smith A, Fleming J, Solomon F.

Genetics. 1998 Jun;149(2):857-64.

10.

Stu2p binds tubulin and undergoes an open-to-closed conformational change.

Al-Bassam J, van Breugel M, Harrison SC, Hyman A.

J Cell Biol. 2006 Mar 27;172(7):1009-22.

12.
13.

Crystal structure of the post-chaperonin beta-tubulin binding cofactor Rbl2p.

Steinbacher S.

Nat Struct Biol. 1999 Nov;6(11):1029-32.

PMID:
10542094
14.

Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics.

Lopez-Fanarraga M, Avila J, Guasch A, Coll M, Zabala JC.

J Struct Biol. 2001 Aug;135(2):219-29. Review.

PMID:
11580271
15.

Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae.

Burns CG, Ohi R, Mehta S, O'Toole ET, Winey M, Clark TA, Sugnet CW, Ares M Jr, Gould KL.

Mol Cell Biol. 2002 Feb;22(3):801-15.

16.

A chaperone with a hydrophilic surface.

Cowan NJ, Lewis SA.

Nat Struct Biol. 1999 Nov;6(11):990-1.

PMID:
10542082
17.

Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency.

Podolski M, Mahamdeh M, Howard J.

J Biol Chem. 2014 Oct 10;289(41):28087-93. doi: 10.1074/jbc.M114.584300. Epub 2014 Aug 29.

18.

Identification of Saccharomyces cerevisiae Tub1 alpha-tubulin as a potential target for NKH-7, a cytotoxic 1-naphthol derivative compound.

Chanklan R, Mizunuma M, Kongkathip N, Hasitapan K, Kongkathip B, Miyakawa T.

Biosci Biotechnol Biochem. 2008 Apr;72(4):1023-31. Epub 2008 Apr 7.

19.

Newly-synthesized beta-tubulin demonstrates domain-specific interactions with the cytosolic chaperonin.

Dobrzynski JK, Sternlicht ML, Farr GW, Sternlicht H.

Biochemistry. 1996 Dec 10;35(49):15870-82.

PMID:
8961952
20.

Activation of H(+)-ATPase by glucose in Saccharomyces cerevisiae involves a membrane serine protease.

Campetelli AN, Monesterolo NE, Previtali G, Santander VS, Amaiden MR, Arce CA, Valdez-Taubas J, Casale CH.

Biochim Biophys Acta. 2013 Jun;1830(6):3593-603. doi: 10.1016/j.bbagen.2013.03.012. Epub 2013 Mar 18.

PMID:
23518202

Supplemental Content

Support Center