Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation.

West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA.

Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10910-4.

2.

Amino acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III-IV linker.

Patton DE, West JW, Catterall WA, Goldin AL.

Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10905-9.

3.

Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels.

Kellenberger S, West JW, Scheuer T, Catterall WA.

J Gen Physiol. 1997 May;109(5):589-605.

4.

A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation.

McPhee JC, Ragsdale DS, Scheuer T, Catterall WA.

J Biol Chem. 1995 May 19;270(20):12025-34.

5.

External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels.

Balser JR, Nuss HB, Chiamvimonvat N, Pérez-García MT, Marban E, Tomaselli GF.

J Physiol. 1996 Jul 15;494 ( Pt 2):431-42.

6.

A mutation in segment IVS6 disrupts fast inactivation of sodium channels.

McPhee JC, Ragsdale DS, Scheuer T, Catterall WA.

Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12346-50.

7.

A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation.

McPhee JC, Ragsdale DS, Scheuer T, Catterall WA.

J Biol Chem. 1998 Jan 9;273(2):1121-9.

8.

Effects of III-IV linker mutations on human heart Na+ channel inactivation gating.

Hartmann HA, Tiedeman AA, Chen SF, Brown AM, Kirsch GE.

Circ Res. 1994 Jul;75(1):114-22.

9.

Changes in sodium channel gating produced by point mutations in a cytoplasmic linker.

Moorman JR, Kirsch GE, Brown AM, Joho RH.

Science. 1990 Nov 2;250(4981):688-91.

PMID:
2173138
11.

Cysteine scanning analysis of the IFM cluster in the inactivation gate of a human heart sodium channel.

Deschênes I, Trottier E, Chahine M.

Cardiovasc Res. 1999 May;42(2):521-9.

PMID:
10533587
12.

Comparative study of the gating motif and C-type inactivation in prokaryotic voltage-gated sodium channels.

Irie K, Kitagawa K, Nagura H, Imai T, Shimomura T, Fujiyoshi Y.

J Biol Chem. 2010 Feb 5;285(6):3685-94. doi: 10.1074/jbc.M109.057455. Epub 2009 Dec 3.

14.

Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current.

Jurkat-Rott K, Mitrovic N, Hang C, Kouzmekine A, Iaizzo P, Herzog J, Lerche H, Nicole S, Vale-Santos J, Chauveau D, Fontaine B, Lehmann-Horn F.

Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9549-54.

15.

Restoration of fast inactivation in an inactivation-defective human heart sodium channel by the cysteine modifying reagent benzyl-MTS: analysis of IFM-ICM mutation.

Chahine M, Deschênes I, Trottier E, Chen LQ, Kallen RG.

Biochem Biophys Res Commun. 1997 Apr 28;233(3):606-10.

PMID:
9168898
16.
18.

Restoration of inactivation and block of open sodium channels by an inactivation gate peptide.

Eaholtz G, Scheuer T, Catterall WA.

Neuron. 1994 May;12(5):1041-8.

PMID:
8185942
19.

Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel.

Qu Y, Rogers J, Tanada T, Scheuer T, Catterall WA.

Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11839-43.

20.

Coupling between fast and slow inactivation revealed by analysis of a point mutation (F1304Q) in mu 1 rat skeletal muscle sodium channels.

Nuss HB, Balser JR, Orias DW, Lawrence JH, Tomaselli GF, Marban E.

J Physiol. 1996 Jul 15;494 ( Pt 2):411-29.

Supplemental Content

Support Center