Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 245

1.

Neuroimaging of direction-selective mechanisms for second-order motion.

Nishida S, Sasaki Y, Murakami I, Watanabe T, Tootell RB.

J Neurophysiol. 2003 Nov;90(5):3242-54. Epub 2003 Aug 13.

2.

The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI).

Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J.

J Neurosci. 1998 May 15;18(10):3816-30.

3.

FMRI adaptation reveals separate mechanisms for first-order and second-order motion.

Ashida H, Lingnau A, Wall MB, Smith AT.

J Neurophysiol. 2007 Feb;97(2):1319-25. Epub 2006 Oct 25.

4.

Functional MRI studies of human visual motion perception: texture, luminance, attention and after-effects.

Seiffert AE, Somers DC, Dale AM, Tootell RB.

Cereb Cortex. 2003 Apr;13(4):340-9.

PMID:
12631563
5.

The representation of behavioral choice for motion in human visual cortex.

Serences JT, Boynton GM.

J Neurosci. 2007 Nov 21;27(47):12893-9.

6.

Functional analysis of V3A and related areas in human visual cortex.

Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM.

J Neurosci. 1997 Sep 15;17(18):7060-78.

7.

Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging.

Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW.

J Neurosci. 1995 Apr;15(4):3215-30.

8.

Cortical specialization for processing first- and second-order motion.

Dumoulin SO, Baker CL Jr, Hess RF, Evans AC.

Cereb Cortex. 2003 Dec;13(12):1375-85.

PMID:
14615303
9.

Processing of first-order motion in marmoset visual cortex is influenced by second-order motion.

Barraclough N, Tinsley C, Webb B, Vincent C, Derrington A.

Vis Neurosci. 2006 Sep-Oct;23(5):815-24.

PMID:
17020636
10.

Representation of motion boundaries in retinotopic human visual cortical areas.

Reppas JB, Niyogi S, Dale AM, Sereno MI, Tootell RB.

Nature. 1997 Jul 10;388(6638):175-9.

PMID:
9217157
11.

Orientation-tuned FMRI adaptation in human visual cortex.

Fang F, Murray SO, Kersten D, He S.

J Neurophysiol. 2005 Dec;94(6):4188-95. Epub 2005 Aug 24.

12.

Task-related modulation of visual cortex.

Huk AC, Heeger DJ.

J Neurophysiol. 2000 Jun;83(6):3525-36.

13.

Stimulus-contrast-induced biases in activation order reveal interaction between V1/V2 and human MT+.

Maruyama M, Palomo DD, Ioannides AA.

Hum Brain Mapp. 2009 Jan;30(1):147-62.

PMID:
18041740
14.

A double dissociation between striate and extrastriate visual cortex for pattern motion perception revealed using rTMS.

Thompson B, Aaen-Stockdale C, Koski L, Hess RF.

Hum Brain Mapp. 2009 Oct;30(10):3115-26. doi: 10.1002/hbm.20736.

PMID:
19224619
15.

Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging.

Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR.

Nature. 1995 May 11;375(6527):139-41.

PMID:
7753168
16.

Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI.

Ahlfors SP, Simpson GV, Dale AM, Belliveau JW, Liu AK, Korvenoja A, Virtanen J, Huotilainen M, Tootell RB, Aronen HJ, Ilmoniemi RJ.

J Neurophysiol. 1999 Nov;82(5):2545-55.

17.

Priming of first- and second-order motion: mechanisms and neural substrates.

Campana G, Pavan A, Casco C.

Neuropsychologia. 2008 Jan 31;46(2):393-8. Epub 2007 Aug 2.

PMID:
17825851
18.

A binocular rivalry study of motion perception in the human brain.

Moutoussis K, Keliris G, Kourtzi Z, Logothetis N.

Vision Res. 2005 Aug;45(17):2231-43. Epub 2005 Mar 17.

19.

Processing 3D form and 3D motion: respective contributions of attention-based and stimulus-driven activity.

Paradis AL, Droulez J, Cornilleau-Pérès V, Poline JB.

Neuroimage. 2008 Dec;43(4):736-47. doi: 10.1016/j.neuroimage.2008.08.027. Epub 2008 Aug 30.

PMID:
18805496
20.

Supplemental Content

Support Center