Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k.

Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J.

J Physiol. 2003 Aug 15;551(Pt 1):13-32. Epub 2003 Jun 17.

2.

Alterations in Purkinje cell spines of calbindin D-28 k and parvalbumin knock-out mice.

Vecellio M, Schwaller B, Meyer M, Hunziker W, Celio MR.

Eur J Neurosci. 2000 Mar;12(3):945-54.

PMID:
10762324
3.
5.

Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins.

Schmidt H, Kunerth S, Wilms C, Strotmann R, Eilers J.

J Physiol. 2007 Jun 1;581(Pt 2):619-29. Epub 2007 Mar 8.

6.

The role of parvalbumin and calbindin D28k in experimental scrapie.

Voigtländer T, Unterberger U, Guentchev M, Schwaller B, Celio MR, Meyer M, Budka H.

Neuropathol Appl Neurobiol. 2008 Aug;34(4):435-45. Epub 2007 Nov 25.

PMID:
18005331
7.
8.

Compensatory regulation of Cav2.1 Ca2+ channels in cerebellar Purkinje neurons lacking parvalbumin and calbindin D-28k.

Kreiner L, Christel CJ, Benveniste M, Schwaller B, Lee A.

J Neurophysiol. 2010 Jan;103(1):371-81. doi: 10.1152/jn.00635.2009. Epub 2009 Nov 11.

9.

Prolonged contraction-relaxation cycle of fast-twitch muscles in parvalbumin knockout mice.

Schwaller B, Dick J, Dhoot G, Carroll S, Vrbova G, Nicotera P, Pette D, Wyss A, Bluethmann H, Hunziker W, Celio MR.

Am J Physiol. 1999 Feb;276(2 Pt 1):C395-403.

10.

Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k.

Servais L, Bearzatto B, Schwaller B, Dumont M, De Saedeleer C, Dan B, Barski JJ, Schiffmann SN, Cheron G.

Eur J Neurosci. 2005 Aug;22(4):861-70.

PMID:
16115209
11.

Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation.

Seress L, Gulyás AI, Ferrer I, Tunon T, Soriano E, Freund TF.

J Comp Neurol. 1993 Nov 8;337(2):208-30.

PMID:
8276998
12.

Differences in locomotor behavior revealed in mice deficient for the calcium-binding proteins parvalbumin, calbindin D-28k or both.

Farré-Castany MA, Schwaller B, Gregory P, Barski J, Mariethoz C, Eriksson JL, Tetko IV, Wolfer D, Celio MR, Schmutz I, Albrecht U, Villa AE.

Behav Brain Res. 2007 Mar 28;178(2):250-61. Epub 2007 Jan 5.

PMID:
17275105
15.

Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination.

Barski JJ, Hartmann J, Rose CR, Hoebeek F, Mörl K, Noll-Hussong M, De Zeeuw CI, Konnerth A, Meyer M.

J Neurosci. 2003 Apr 15;23(8):3469-77.

16.
18.

Developmental changes in parvalbumin regulate presynaptic Ca2+ signaling.

Collin T, Chat M, Lucas MG, Moreno H, Racay P, Schwaller B, Marty A, Llano I.

J Neurosci. 2005 Jan 5;25(1):96-107.

20.

Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons.

Müller A, Kukley M, Stausberg P, Beck H, Müller W, Dietrich D.

J Neurosci. 2005 Jan 19;25(3):558-65.

Supplemental Content

Support Center