Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 179

1.

Microcrack accumulation at different intervals during fatigue testing of compact bone.

O'Brien FJ, Taylor D, Lee TC.

J Biomech. 2003 Jul;36(7):973-80.

PMID:
12757806
2.

New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.

Zarrinkalam KH, Kuliwaba JS, Martin RB, Wallwork MA, Fazzalari NL.

Eur J Morphol. 2005 Feb-Apr;42(1-2):81-90.

PMID:
16123027
3.

The effect of bone microstructure on the initiation and growth of microcracks.

O'Brien FJ, Taylor D, Clive Lee T.

J Orthop Res. 2005 Mar;23(2):475-80.

4.

Fatigue microdamage in bovine trabecular bone.

Moore TL, Gibson LJ.

J Biomech Eng. 2003 Dec;125(6):769-76.

PMID:
14986400
5.

Microdamage propagation in trabecular bone due to changes in loading mode.

Wang X, Niebur GL.

J Biomech. 2006;39(5):781-90.

PMID:
16488217
6.

The behaviour of microcracks in compact bone.

O'brien FJ, Hardiman DA, Hazenberg JG, Mercy MV, Mohsin S, Taylor D, Lee TC.

Eur J Morphol. 2005 Feb-Apr;42(1-2):71-9.

PMID:
16123026
7.

Microdamage accumulation in bovine trabecular bone in uniaxial compression.

Arthur Moore TL, Gibson LJ.

J Biomech Eng. 2002 Feb;124(1):63-71.

PMID:
11873773
8.

Fatigue of bovine trabecular bone.

Moore TL, Gibson LJ.

J Biomech Eng. 2003 Dec;125(6):761-8.

PMID:
14986399
9.

Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.

Wang X, Guyette J, Liu X, Roeder RK, Niebur GL.

Eur J Morphol. 2005 Feb-Apr;42(1-2):61-70.

PMID:
16123025
10.

An improved labelling technique for monitoring microcrack growth in compact bone.

O'Brien FJ, Taylor D, Lee TC.

J Biomech. 2002 Apr;35(4):523-6.

PMID:
11934422
11.

A phenomenological model for predicting fatigue life in bovine trabecular bone.

Ganguly P, Moore TL, Gibson LJ.

J Biomech Eng. 2004 Jun;126(3):330-9.

PMID:
15341169
12.
13.

The fatigue strength of compact bone in torsion.

Taylor D, O'Reilly P, Vallet L, Lee TC.

J Biomech. 2003 Aug;36(8):1103-9.

PMID:
12831735
14.
15.

Do microcracks decrease or increase fatigue resistance in cortical bone?

Sobelman OS, Gibeling JC, Stover SM, Hazelwood SJ, Yeh OC, Shelton DR, Martin RB.

J Biomech. 2004 Sep;37(9):1295-303.

PMID:
15275836
16.

Creep does not contribute to fatigue in bovine trabecular bone.

Moore TL, O'Brien FJ, Gibson LJ.

J Biomech Eng. 2004 Jun;126(3):321-9.

PMID:
15341168
17.

The behaviour of fatigue-induced microdamage in compact bone samples from control and ovariectomised sheep.

Kennedy OD, Brennan O, Mauer P, O'Brien FJ, Rackard SM, Taylor D, Lee TC.

Stud Health Technol Inform. 2008;133:148-55.

PMID:
18376023
18.

Degradation of bone structural properties by accumulation and coalescence of microcracks.

Danova NA, Colopy SA, Radtke CL, Kalscheur VL, Markel MD, Vanderby R, McCabe RP, Escarcega AJ, Muir P.

Bone. 2003 Aug;33(2):197-205.

PMID:
14499353
19.

Distribution of microcrack lengths in bone in vivo and in vitro.

Presbitero G, O'Brien FJ, Lee TC, Taylor D.

J Theor Biol. 2012 Jul 7;304:164-71. doi: 10.1016/j.jtbi.2012.03.027. Epub 2012 Apr 5.

PMID:
22498804
20.

In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis.

Martin RB, Stover SM, Gibson VA, Gibeling JC, Griffin LV.

J Orthop Res. 1996 Sep;14(5):794-801.

PMID:
8893774

Supplemental Content

Support Center