Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae.

Anderson JB, Sirjusingh C, Parsons AB, Boone C, Wickens C, Cowen LE, Kohn LM.

Genetics. 2003 Apr;163(4):1287-98.

2.

Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae.

Anderson JB, Sirjusingh C, Ricker N.

Genetics. 2004 Dec;168(4):1915-23. Epub 2004 Sep 15.

3.

Antagonism between two mechanisms of antifungal drug resistance.

Anderson JB, Ricker N, Sirjusingh C.

Eukaryot Cell. 2006 Aug;5(8):1243-51.

4.

Mutational effects depend on ploidy level: all else is not equal.

Gerstein AC.

Biol Lett. 2013 Feb 23;9(1):20120614. doi: 10.1098/rsbl.2012.0614. Epub 2012 Oct 10.

5.
6.

The ATP-binding cassette multidrug transporter Snq2 of Saccharomyces cerevisiae: a novel target for the transcription factors Pdr1 and Pdr3.

Mahé Y, Parle-McDermott A, Nourani A, Delahodde A, Lamprecht A, Kuchler K.

Mol Microbiol. 1996 Apr;20(1):109-17.

PMID:
8861209
7.
8.

Gene expression and evolution of antifungal drug resistance.

Anderson JB, Sirjusingh C, Syed N, Lafayette S.

Antimicrob Agents Chemother. 2009 May;53(5):1931-6. doi: 10.1128/AAC.01315-08. Epub 2009 Mar 9.

11.

Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae.

Coste AT, Ramsdale M, Ischer F, Sanglard D.

Microbiology. 2008 May;154(Pt 5):1491-501. doi: 10.1099/mic.0.2007/016063-0.

PMID:
18451058
12.

Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes.

Carvajal E, van den Hazel HB, Cybularz-Kolaczkowska A, Balzi E, Goffeau A.

Mol Gen Genet. 1997 Oct;256(4):406-15.

PMID:
9393438
13.

Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals.

Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, Manai M, Sanglard D.

Antimicrob Agents Chemother. 2013 Jul;57(7):3182-93. doi: 10.1128/AAC.00555-13. Epub 2013 Apr 29.

14.

The yield of experimental yeast populations declines during selection.

Jasmin JN, Dillon MM, Zeyl C.

Proc Biol Sci. 2012 Nov 7;279(1746):4382-8. Epub 2012 Sep 5.

15.

Genetic prerequisites for additive or synergistic actions of 5-fluorocytosine and fluconazole in baker's yeast.

Paluszynski JP, Klassen R, Meinhardt F.

Microbiology. 2008 Oct;154(Pt 10):3154-64. doi: 10.1099/mic.0.2008/020107-0.

PMID:
18832321
16.

Cryptic fitness advantage: diploids invade haploid populations despite lacking any apparent advantage as measured by standard fitness assays.

Gerstein AC, Otto SP.

PLoS One. 2011;6(12):e26599. doi: 10.1371/journal.pone.0026599. Epub 2011 Dec 9.

17.

An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans.

Heilmann CJ, Schneider S, Barker KS, Rogers PD, Morschhäuser J.

Antimicrob Agents Chemother. 2010 Jan;54(1):353-9. doi: 10.1128/AAC.01102-09. Epub 2009 Nov 2.

18.

Genetic architecture of Hsp90-dependent drug resistance.

Cowen LE, Carpenter AE, Matangkasombut O, Fink GR, Lindquist S.

Eukaryot Cell. 2006 Dec;5(12):2184-8. Epub 2006 Oct 20.

19.

Haploids adapt faster than diploids across a range of environments.

Gerstein AC, Cleathero LA, Mandegar MA, Otto SP.

J Evol Biol. 2011 Mar;24(3):531-40. doi: 10.1111/j.1420-9101.2010.02188.x. Epub 2010 Dec 16.

20.

Camptothecin sensitivity is mediated by the pleiotropic drug resistance network in yeast.

Reid RJ, Kauh EA, Bjornsti MA.

J Biol Chem. 1997 May 2;272(18):12091-9.

Supplemental Content

Support Center