Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 164

1.

Lactofen induces isoflavone accumulation and glyceollin elicitation competency in soybean.

Landini S, Graham MY, Graham TL.

Phytochemistry. 2003 Mar;62(6):865-74.

PMID:
12590114
2.
4.

Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus.

Boué SM, Carter CH, Ehrlich KC, Cleveland TE.

J Agric Food Chem. 2000 Jun;48(6):2167-72.

PMID:
10888516
6.

Potential defense-related prenylated isoflavones in lactofen-induced soybean.

Cheng J, Yuan C, Graham TL.

Phytochemistry. 2011 Jun;72(9):875-81. doi: 10.1016/j.phytochem.2011.03.010. Epub 2011 Apr 7.

PMID:
21477824
7.

Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani.

Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL, Widholm JM.

Plant Physiol Biochem. 2004 Jul-Aug;42(7-8):671-9.

PMID:
15331097
8.

LC/UV/ESI-MS analysis of isoflavones in Edamame and Tofu soybeans.

Wu Q, Wang M, Sciarappa WJ, Simon JE.

J Agric Food Chem. 2004 May 19;52(10):2763-9.

PMID:
15137811
9.

Inducible De Novo Biosynthesis of Isoflavonoids in Soybean Leaves by Spodoptera litura Derived Elicitors: Tracer Techniques Aided by High Resolution LCMS.

Nakata R, Kimura Y, Aoki K, Yoshinaga N, Teraishi M, Okumoto Y, Huffaker A, Schmelz EA, Mori N.

J Chem Ecol. 2016 Dec;42(12):1226-1236. Epub 2016 Nov 8.

PMID:
27826811
10.

Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells.

Stäb MR, Ebel J.

Arch Biochem Biophys. 1987 Sep;257(2):416-23.

PMID:
3116938
11.

Induction of H(2)O(2) synthesis by beta-glucan elicitors in soybean is independent of cytosolic calcium transients.

Mithöfer A, Fliegmann J, Daxberger A, Ebel C, Neuhaus-Url G, Bhagwat AA, Keister DL, Ebel J.

FEBS Lett. 2001 Nov 16;508(2):191-5.

12.

Response of soybean pathogens to glyceollin.

Lygin AV, Hill CB, Zernova OV, Crull L, Widholm JM, Hartman GL, Lozovaya VV.

Phytopathology. 2010 Sep;100(9):897-903. doi: 10.1094/PHYTO-100-9-0897.

13.
14.

Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase.

Warabi E, Usui K, Tanaka Y, Matsumoto H.

Pest Manag Sci. 2001 Aug;57(8):743-8.

PMID:
11517729
15.

Effect of spaceflight on isoflavonoid accumulation in etiolated soybean seedlings.

Levine LH, Levine HG, Stryjewski EC, Prima V, Piastuch WC.

J Gravit Physiol. 2001 Dec;8(2):21-7.

PMID:
12365447
16.
17.

The importance of phenolic metabolism to limit the growth of Phakopsora pachyrhizi.

Lygin AV, Li S, Vittal R, Widholm JM, Hartman GL, Lozovaya VV.

Phytopathology. 2009 Dec;99(12):1412-20. doi: 10.1094/PHYTO-99-12-1412.

18.

Metabolic engineering to increase isoflavone biosynthesis in soybean seed.

Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT.

Phytochemistry. 2003 Aug;63(7):753-63.

PMID:
12877915
19.

Changes of isoflavone profile in the hypocotyls and cotyledons of soybeans during dry heating and germination.

Yuan JP, Liu YB, Peng J, Wang JH, Liu X.

J Agric Food Chem. 2009 Oct 14;57(19):9002-10. doi: 10.1021/jf902248b.

PMID:
19807159
20.

Effect of Aspergillus oryzae-challenged germination on soybean isoflavone content and antioxidant activity.

Jeon HY, Seo DB, Shin HJ, Lee SJ.

J Agric Food Chem. 2012 Mar 21;60(11):2807-14. doi: 10.1021/jf204708n. Epub 2012 Mar 12.

PMID:
22409158

Supplemental Content

Support Center