Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Embryonic inner ear cells reaggregate into specific patterns in vitro.

Bianchi LM, Person AL, Penney EB.

J Assoc Res Otolaryngol. 2002 Dec;3(4):418-29. Epub 2002 Mar 26.

2.

Embryonic inner ear cells use migratory mechanisms to establish cell patterns in vitro.

Bianchi LM, Huri D, White IO.

J Neurosci Res. 2006 Feb 1;83(2):191-8.

PMID:
16342204
3.

Class III beta-tubulin expression in sensory and nonsensory regions of the developing avian inner ear.

Molea D, Stone JS, Rubel EW.

J Comp Neurol. 1999 Apr 5;406(2):183-98.

PMID:
10096605
4.

Hair cell development in vivo and in vitro: analysis by using a monoclonal antibody specific to hair cells in the chick inner ear.

Kondo K, Sagara H, Hirosawa K, Kaga K, Matsushima S, Mabuchi K, Uchimura H, Watanabe T.

J Comp Neurol. 2002 Apr 1;445(2):176-98.

PMID:
11891661
5.

Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear.

Lawoko-Kerali G, Rivolta MN, Holley M.

J Comp Neurol. 2002 Jan 21;442(4):378-91.

PMID:
11793341
6.

Hair-cell regeneration in organ cultures of the postnatal chicken inner ear.

Oesterle EC, Tsue TT, Reh TA, Rubel EW.

Hear Res. 1993 Oct;70(1):85-108.

PMID:
8276735
7.

Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.

Kirjavainen A, Sulg M, Heyd F, Alitalo K, Ylä-Herttuala S, Möröy T, Petrova TV, Pirvola U.

Dev Biol. 2008 Oct 1;322(1):33-45. doi: 10.1016/j.ydbio.2008.07.004. Epub 2008 Jul 9.

8.
9.

Expression of calretinin by fetal otocyst cells after transplantation into damaged rat utricle explants.

Kim TS, Kojima K, Nishida AT, Tashiro K, Lee JE, Fujino K, Nakagawa T, Naito Y, Omori K, Lefebvre P, Ito J.

Acta Otolaryngol Suppl. 2004 Mar;(551):34-8.

PMID:
15078075
10.
11.

Calbindin and S100 protein expression in the developing inner ear in mice.

Buckiová D, Syka J.

J Comp Neurol. 2009 Apr 10;513(5):469-82. doi: 10.1002/cne.21967.

PMID:
19226521
12.

Cell cycle regulation in the inner ear sensory epithelia: role of cyclin D1 and cyclin-dependent kinase inhibitors.

Laine H, Sulg M, Kirjavainen A, Pirvola U.

Dev Biol. 2010 Jan 1;337(1):134-46. doi: 10.1016/j.ydbio.2009.10.027. Epub 2009 Oct 23.

13.

Characterization of leukocyte subtypes in chicken inner ear sensory epithelia.

O'Halloran EK, Oesterle EC.

J Comp Neurol. 2004 Jul 26;475(3):340-60.

PMID:
15221950
14.

Patterning and cell fate in ear development.

Alsina B, Giraldez F, Pujades C.

Int J Dev Biol. 2009;53(8-10):1503-13. doi: 10.1387/ijdb.072422ba. Review.

16.

Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear.

Dechesne CJ, Thomasset M.

Brain Res. 1988 May 16;468(2):233-42.

PMID:
3260120
17.
18.

Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation.

Ma Q, Anderson DJ, Fritzsch B.

J Assoc Res Otolaryngol. 2000 Sep;1(2):129-43. Erratum in: J Assoc Res Otolaryngol 2000 Dec;1(4):326.

19.
20.

Hair cell formation in cultures of dissociated cells from the vestibular sensory epithelium of the bullfrog.

Cristobal R, Lopez I, Chiang S, Honrubia D, Zamora C, Espinosa de los Monteros A, Micevych P, Honrubia V.

Am J Otol. 1998 Sep;19(5):660-8.

PMID:
9752977

Supplemental Content

Support Center