Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Genomic scale mutant hunt identifies cell size homeostasis genes in S. cerevisiae.

Zhang J, Schneider C, Ottmers L, Rodriguez R, Day A, Markwardt J, Schneider BL.

Curr Biol. 2002 Dec 10;12(23):1992-2001.

2.

Cell cycle progression in G1 and S phases is CCR4 dependent following ionizing radiation or replication stress in Saccharomyces cerevisiae.

Westmoreland TJ, Marks JR, Olson JA Jr, Thompson EM, Resnick MA, Bennett CB.

Eukaryot Cell. 2004 Apr;3(2):430-46.

3.

A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae.

Arita A, Zhou X, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz A, Klein CB, Dai W, Begley TJ, Costa M.

BMC Genomics. 2009 Nov 15;10:524. doi: 10.1186/1471-2164-10-524.

4.

A genomic approach to studying cell-size homeostasis in yeast.

Millar JB.

Genome Biol. 2002 Sep 20;3(10):REVIEWS1028. Epub 2002 Sep 20. Review.

5.

Uncovering genetic relationships using small molecules that selectively target yeast cell cycle mutants.

Nehil MT, Tamble CM, Combs DJ, Kellogg DR, Lokey RS.

Chem Biol Drug Des. 2007 Apr;69(4):258-64.

PMID:
17461973
6.

Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae.

Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF.

Genome Biol. 2005;6(9):R77. Epub 2005 Aug 30.

7.
8.

The chemical genomic portrait of yeast: uncovering a phenotype for all genes.

Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, Altman RB, Davis RW, Nislow C, Giaever G.

Science. 2008 Apr 18;320(5874):362-5. doi: 10.1126/science.1150021.

9.

Genetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression.

Shively CA, Eckwahl MJ, Dobry CJ, Mellacheruvu D, Nesvizhskii A, Kumar A.

Genetics. 2013 Apr;193(4):1297-310. doi: 10.1534/genetics.112.147876. Epub 2013 Feb 14.

10.

Genes which control cell proliferation in the yeast Saccharomyces cerevisiae.

Sudbery PE, Goodey AR, Carter BL.

Nature. 1980 Nov 27;288(5789):401-4.

PMID:
7001255
11.

A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division.

Hoose SA, Rawlings JA, Kelly MM, Leitch MC, Ababneh QO, Robles JP, Taylor D, Hoover EM, Hailu B, McEnery KA, Downing SS, Kaushal D, Chen Y, Rife A, Brahmbhatt KA, Smith R 3rd, Polymenis M.

PLoS Genet. 2012;8(3):e1002590. doi: 10.1371/journal.pgen.1002590. Epub 2012 Mar 15.

12.

Identification of new cell size control genes in S. cerevisiae.

Dungrawala H, Hua H, Wright J, Abraham L, Kasemsri T, McDowell A, Stilwell J, Schneider BL.

Cell Div. 2012 Dec 12;7(1):24. doi: 10.1186/1747-1028-7-24.

14.

Chemical-genetic approaches for exploring the mode of action of natural products.

Lopez A, Parsons AB, Nislow C, Giaever G, Boone C.

Prog Drug Res. 2008;66:237, 239-71. Review.

PMID:
18416308
15.

A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis.

Ayer A, Fellermeier S, Fife C, Li SS, Smits G, Meyer AJ, Dawes IW, Perrone GG.

PLoS One. 2012;7(9):e44278. doi: 10.1371/journal.pone.0044278. Epub 2012 Sep 6.

16.

CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast.

Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M.

Cell. 2004 Jun 25;117(7):899-913.

17.

Genome-wide survey of yeast mutations leading to activation of the yeast cell integrity MAPK pathway: novel insights into diverse MAPK outcomes.

Arias P, Díez-Muñiz S, García R, Nombela C, Rodríguez-Peña JM, Arroyo J.

BMC Genomics. 2011 Aug 2;12:390. doi: 10.1186/1471-2164-12-390.

18.

The Saccharomyces cerevisiae homologue YPA1 of the mammalian phosphotyrosyl phosphatase activator of protein phosphatase 2A controls progression through the G1 phase of the yeast cell cycle.

Van Hoof C, Janssens V, De Baere I, de Winde JH, Winderickx J, Dumortier F, Thevelein JM, Merlevede W, Goris J.

J Mol Biol. 2000 Sep 8;302(1):103-20.

PMID:
10964564
19.

Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae.

Westmoreland TJ, Wickramasekara SM, Guo AY, Selim AL, Winsor TS, Greenleaf AL, Blackwell KL, Olson JA Jr, Marks JR, Bennett CB.

PLoS One. 2009 Jun 8;4(6):e5830. doi: 10.1371/journal.pone.0005830.

20.

Reporter-based synthetic genetic array analysis: a functional genomics approach for investigating the cell cycle in Saccharomyces cerevisiae.

Sassi HE, Bastajian N, Kainth P, Andrews BJ.

Methods Mol Biol. 2009;548:55-73. doi: 10.1007/978-1-59745-540-4_4.

PMID:
19521819

Supplemental Content

Support Center