Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins.

Panse VG, K├╝ster B, Gerstberger T, Hurt E.

Nat Cell Biol. 2003 Jan;5(1):21-7.

PMID:
12471376
2.

Drosophila Ulp1, a nuclear pore-associated SUMO protease, prevents accumulation of cytoplasmic SUMO conjugates.

Smith M, Bhaskar V, Fernandez J, Courey AJ.

J Biol Chem. 2004 Oct 15;279(42):43805-14. Epub 2004 Aug 4.

3.

Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins.

Takahashi Y, Mizoi J, Toh-E A, Kikuchi Y.

J Biochem. 2000 Nov;128(5):723-5.

4.

A novel mechanism for SUMO system control: regulated Ulp1 nucleolar sequestration.

Sydorskyy Y, Srikumar T, Jeram SM, Wheaton S, Vizeacoumar FJ, Makhnevych T, Chong YT, Gingras AC, Raught B.

Mol Cell Biol. 2010 Sep;30(18):4452-62. doi: 10.1128/MCB.00335-10. Epub 2010 Jul 20.

5.

Nucleocytoplasmic transport in yeast: a few roles for many actors.

Fiserova J, Goldberg MW.

Biochem Soc Trans. 2010 Feb;38(Pt 1):273-7. doi: 10.1042/BST0380273. Review.

PMID:
20074073
6.

Noncovalent binding of small ubiquitin-related modifier (SUMO) protease to SUMO is necessary for enzymatic activities and cell growth.

Ihara M, Koyama H, Uchimura Y, Saitoh H, Kikuchi A.

J Biol Chem. 2007 Jun 1;282(22):16465-75. Epub 2007 Apr 11.

7.

The SUMO-specific isopeptidase SENP2 associates dynamically with nuclear pore complexes through interactions with karyopherins and the Nup107-160 nucleoporin subcomplex.

Goeres J, Chan PK, Mukhopadhyay D, Zhang H, Raught B, Matunis MJ.

Mol Biol Cell. 2011 Dec;22(24):4868-82. doi: 10.1091/mbc.E10-12-0953. Epub 2011 Oct 26.

8.
9.

Deciphering networks of protein interactions at the nuclear pore complex.

Allen NP, Patel SS, Huang L, Chalkley RJ, Burlingame A, Lutzmann M, Hurt EC, Rexach M.

Mol Cell Proteomics. 2002 Dec;1(12):930-46.

10.

Adjunct duties for karyopherins: regulating septin sumoylation.

Panse VG, Hurt E.

Dev Cell. 2007 May;12(5):669-70.

11.

The nuclear pore regulates GAL1 gene transcription by controlling the localization of the SUMO protease Ulp1.

Texari L, Dieppois G, Vinciguerra P, Contreras MP, Groner A, Letourneau A, Stutz F.

Mol Cell. 2013 Sep 26;51(6):807-18. doi: 10.1016/j.molcel.2013.08.047.

13.

Novel interaction of the 60S ribosomal subunit export adapter Nmd3 at the nuclear pore complex.

West M, Hedges JB, Lo KY, Johnson AW.

J Biol Chem. 2007 May 11;282(19):14028-37. Epub 2007 Mar 8.

14.

A new protease required for cell-cycle progression in yeast.

Li SJ, Hochstrasser M.

Nature. 1999 Mar 18;398(6724):246-51.

PMID:
10094048
15.

Minimal nuclear pore complexes define FG repeat domains essential for transport.

Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR.

Nat Cell Biol. 2004 Mar;6(3):197-206. Epub 2004 Feb 22.

PMID:
15039779
16.

Sumo-dependent substrate targeting of the SUMO protease Ulp1.

Elmore ZC, Donaher M, Matson BC, Murphy H, Westerbeck JW, Kerscher O.

BMC Biol. 2011 Oct 28;9:74. doi: 10.1186/1741-7007-9-74.

17.
18.

Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization.

Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA.

Cell. 2004 May 14;117(4):427-39.

19.
20.

Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import.

Stewart M, Baker RP, Bayliss R, Clayton L, Grant RP, Littlewood T, Matsuura Y.

FEBS Lett. 2001 Jun 8;498(2-3):145-9. Review.

Supplemental Content

Support Center