Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 248

1.

Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines.

Jackson RG, Kowalczyk M, Li Y, Higgins G, Ross J, Sandberg G, Bowles DJ.

Plant J. 2002 Nov;32(4):573-83.

2.

Arabidopsis thaliana GH3.9 influences primary root growth.

Khan S, Stone JM.

Planta. 2007 Jun;226(1):21-34. Epub 2007 Jan 11.

PMID:
17216483
3.
5.

Transgenic tobacco plants expressing the Arabidopsis thaliana nitrilase II enzyme.

Schmidt RC, Müller A, Hain R, Bartling D, Weiler EW.

Plant J. 1996 May;9(5):683-91.

6.

Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh.

Rock CD, Sun X.

Planta. 2005 Sep;222(1):98-106. Epub 2005 May 12.

PMID:
15889272
7.

Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis.

Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M.

Plant J. 2005 Nov;44(3):382-95.

8.
10.

The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana.

Lanot A, Hodge D, Jackson RG, George GL, Elias L, Lim EK, Vaistij FE, Bowles DJ.

Plant J. 2006 Oct;48(2):286-95. Epub 2006 Sep 22.

11.

Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana.

Peltier C, Schmidlin L, Klein E, Taconnat L, Prinsen E, Erhardt M, Heintz D, Weyens G, Lefebvre M, Renou JP, Gilmer D.

Transgenic Res. 2011 Jun;20(3):443-66. doi: 10.1007/s11248-010-9424-3. Epub 2010 Jul 3.

PMID:
20602166
12.

Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis.

Grubb CD, Zipp BJ, Ludwig-Müller J, Masuno MN, Molinski TF, Abel S.

Plant J. 2004 Dec;40(6):893-908.

13.

A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid.

Rahman A, Nakasone A, Chhun T, Ooura C, Biswas KK, Uchimiya H, Tsurumi S, Baskin TI, Tanaka A, Oono Y.

Plant J. 2006 Sep;47(5):788-801.

14.

Stems of the Arabidopsis pin1-1 mutant are not deficient in free indole-3-acetic acid.

Jones SE, Demeo JS, Davies NW, Noonan SE, Ross JJ.

Planta. 2005 Oct;222(3):530-4. Epub 2005 May 26.

PMID:
15918026
15.

Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis.

Seidel C, Walz A, Park S, Cohen JD, Ludwig-Müller J.

Plant Biol (Stuttg). 2006 May;8(3):340-5. Review.

PMID:
16807826
16.

The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters.

Havlová M, Dobrev PI, Motyka V, Storchová H, Libus J, Dobrá J, Malbeck J, Gaudinová A, Vanková R.

Plant Cell Environ. 2008 Mar;31(3):341-53. Epub 2007 Dec 10.

17.

ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation.

Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matsui M.

Plant J. 2004 Feb;37(4):471-83.

19.

The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis.

Li L, Hou X, Tsuge T, Ding M, Aoyama T, Oka A, Gu H, Zhao Y, Qu LJ.

Plant Cell Rep. 2008 Mar;27(3):575-84. Epub 2007 Oct 10.

PMID:
17926040
20.

Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco.

Polanská L, Vicánková A, Nováková M, Malbeck J, Dobrev PI, Brzobohaty B, Vanková R, Machácková I.

J Exp Bot. 2007;58(3):637-49. Epub 2006 Dec 14.

PMID:
17175552

Supplemental Content

Support Center