Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 581

1.

Human cortical dynamics determined by speech fundamental frequency.

Mäkelä AM, Alku P, Mäkinen V, Valtonen J, May P, Tiitinen H.

Neuroimage. 2002 Nov;17(3):1300-5.

PMID:
12414269
2.

Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.

Nikjeh DA, Lister JJ, Frisch SA.

Ear Hear. 2009 Aug;30(4):432-46. doi: 10.1097/AUD.0b013e3181a61bf2.

PMID:
19494778
3.

Temporal integration of vowel periodicity in the auditory cortex.

Yrttiaho S, Tiitinen H, Alku P, Miettinen I, May PJ.

J Acoust Soc Am. 2010 Jul;128(1):224-34. doi: 10.1121/1.3397622.

PMID:
20649218
4.

Glides in speech fundamental frequency are reflected in the auditory N1m response.

Mäkelä AM, Alku P, Mäkinen V, Tiitinen H.

Neuroreport. 2004 May 19;15(7):1205-8.

PMID:
15129175
5.

Cortical sensitivity to periodicity of speech sounds.

Yrttiaho S, Tiitinen H, May PJ, Leino S, Alku P.

J Acoust Soc Am. 2008 Apr;123(4):2191-9. doi: 10.1121/1.2888489.

PMID:
18397025
6.

The auditory evoked magnetic fields to very high frequency tones.

Fujioka T, Kakigi R, Gunji A, Takeshima Y.

Neuroscience. 2002;112(2):367-81.

PMID:
12044454
7.

Periodic glottal excitation and formant frequencies in the perception of vowels.

Tiitinen H, Mäkelä AM, Mäkinen V, May PJ, Alku P.

Neurol Clin Neurophysiol. 2004 Nov 30;2004:103.

PMID:
16012623
8.
9.
10.

Tonotopic representation of missing fundamental complex sounds in the human auditory cortex.

Fujioka T, Ross B, Okamoto H, Takeshima Y, Kakigi R, Pantev C.

Eur J Neurosci. 2003 Jul;18(2):432-40.

PMID:
12887425
11.

The auditory n100m response reflects changes in speech fundamental frequency.

Mäkelä AM, Alku P, May PJ, Mäkinen V, Tiitinen H.

Neurol Clin Neurophysiol. 2004 Nov 30;2004:49.

PMID:
16012605
12.

Activation of the human auditory cortex by speech sounds.

Hari R.

Acta Otolaryngol Suppl. 1991;491:132-7; discussion 138.

PMID:
1814144
13.

Cortical differentiation of speech and nonspeech sounds at 100 ms: implications for dyslexia.

Parviainen T, Helenius P, Salmelin R.

Cereb Cortex. 2005 Jul;15(7):1054-63. Epub 2004 Nov 24.

PMID:
15563727
14.

Contribution of spectrotemporal features on auditory event-related potentials elicited by consonant-vowel syllables.

Digeser FM, Wohlberedt T, Hoppe U.

Ear Hear. 2009 Dec;30(6):704-12. doi: 10.1097/AUD.0b013e3181b1d42d.

PMID:
19672195
15.

Differential brain activation patterns during perception of voice and tone onset time series: a MEG study.

Papanicolaou AC, Castillo E, Breier JI, Davis RN, Simos PG, Diehl RL.

Neuroimage. 2003 Feb;18(2):448-59.

PMID:
12595198
16.

Early parallel processing of auditory word and voice information.

Knösche TR, Lattner S, Maess B, Schauer M, Friederici AD.

Neuroimage. 2002 Nov;17(3):1493-503.

PMID:
12414288
17.

Discrimination of speech and of complex nonspeech sounds of different temporal structure in the left and right cerebral hemispheres.

Shtyrov Y, Kujala T, Palva S, Ilmoniemi RJ, Näätänen R.

Neuroimage. 2000 Dec;12(6):657-63.

PMID:
11112397
18.

Orderly cortical representation of vowel categories presented by multiple exemplars.

Shestakova A, Brattico E, Soloviev A, Klucharev V, Huotilainen M.

Brain Res Cogn Brain Res. 2004 Nov;21(3):342-50.

PMID:
15511650
19.

Left-hemispheric brain activity reflects formant transitions in speech sounds.

Mäkelä AM, Alku P, May PJ, Mäkinen V, Tiitinen H.

Neuroreport. 2005 Apr 25;16(6):549-53.

PMID:
15812305
20.

Representation of the vocal roughness of aperiodic speech sounds in the auditory cortex.

Yrttiaho S, Alku P, May PJ, Tiitinen H.

J Acoust Soc Am. 2009 May;125(5):3177-85. doi: 10.1121/1.3097471.

PMID:
19425660

Supplemental Content

Support Center