Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 158

1.
2.

Quantitative analysis of microtubule dynamics during adhesion-mediated growth cone guidance.

Lee AC, Suter DM.

Dev Neurobiol. 2008 Oct;68(12):1363-77. doi: 10.1002/dneu.20662.

3.

Protein kinase C activation promotes microtubule advance in neuronal growth cones by increasing average microtubule growth lifetimes.

Kabir N, Schaefer AW, Nakhost A, Sossin WS, Forscher P.

J Cell Biol. 2001 Mar 5;152(5):1033-44.

4.
5.

Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones.

Burnette DT, Schaefer AW, Ji L, Danuser G, Forscher P.

Nat Cell Biol. 2007 Dec;9(12):1360-9. Epub 2007 Nov 18.

PMID:
18026092
6.

Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck.

Burnette DT, Ji L, Schaefer AW, Medeiros NA, Danuser G, Forscher P.

Dev Cell. 2008 Jul;15(1):163-9. doi: 10.1016/j.devcel.2008.05.016.

7.

Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules.

Marx A, Godinez WJ, Tsimashchuk V, Bankhead P, Rohr K, Engel U.

Mol Biol Cell. 2013 May;24(10):1544-58. doi: 10.1091/mbc.E12-08-0573. Epub 2013 Mar 20.

9.

Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow.

Zhang XF, Schaefer AW, Burnette DT, Schoonderwoert VT, Forscher P.

Neuron. 2003 Dec 4;40(5):931-44.

10.

Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells.

Salmon WC, Adams MC, Waterman-Storer CM.

J Cell Biol. 2002 Jul 8;158(1):31-7. Epub 2002 Jul 8.

11.

Cortactin colocalizes with filopodial actin and accumulates at IgCAM adhesion sites in Aplysia growth cones.

Decourt B, Munnamalai V, Lee AC, Sanchez L, Suter DM.

J Neurosci Res. 2009 Apr;87(5):1057-68. doi: 10.1002/jnr.21937.

12.

Myosin II functions in actin-bundle turnover in neuronal growth cones.

Medeiros NA, Burnette DT, Forscher P.

Nat Cell Biol. 2006 Mar;8(3):215-26. Epub 2006 Feb 26.

PMID:
16501565
13.

Microtubule and Rac 1-dependent F-actin in growth cones.

Grabham PW, Reznik B, Goldberg DJ.

J Cell Sci. 2003 Sep 15;116(Pt 18):3739-48. Epub 2003 Jul 30.

14.

On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy.

Sahly I, Khoutorsky A, Erez H, Prager-Khoutorsky M, Spira ME.

J Comp Neurol. 2006 Feb 10;494(5):705-20.

PMID:
16374810
15.

Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics.

Sánchez-Soriano N, Gonçalves-Pimentel C, Beaven R, Haessler U, Ofner-Ziegenfuss L, Ballestrem C, Prokop A.

Dev Neurobiol. 2010 Jan;70(1):58-71. doi: 10.1002/dneu.20762.

16.
17.
18.

Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons.

Hu J, Bai X, Bowen JR, Dolat L, Korobova F, Yu W, Baas PW, Svitkina T, Gallo G, Spiliotis ET.

Curr Biol. 2012 Jun 19;22(12):1109-15. doi: 10.1016/j.cub.2012.04.019. Epub 2012 May 17.

19.

Microtubule dynamics are necessary for SRC family kinase-dependent growth cone steering.

Suter DM, Schaefer AW, Forscher P.

Curr Biol. 2004 Jul 13;14(13):1194-9.

20.

Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones.

He Y, Ren Y, Wu B, Decourt B, Lee AC, Taylor A, Suter DM.

Mol Biol Cell. 2015 Sep 15;26(18):3229-44. doi: 10.1091/mbc.E15-03-0142. Epub 2015 Jul 29.

Supplemental Content

Support Center