Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Genetics and assembly line enzymology of siderophore biosynthesis in bacteria.

Crosa JH, Walsh CT.

Microbiol Mol Biol Rev. 2002 Jun;66(2):223-49. Review.

3.

FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa.

Elias S, Degtyar E, Banin E.

Microbiology. 2011 Jul;157(Pt 7):2172-80. doi: 10.1099/mic.0.044768-0. Epub 2011 May 5.

PMID:
21546589
5.

Catechol siderophores repress the pyochelin pathway and activate the enterobactin pathway in Pseudomonas aeruginosa: an opportunity for siderophore-antibiotic conjugates development.

Gasser V, Baco E, Cunrath O, August PS, Perraud Q, Zill N, Schleberger C, Schmidt A, Paulen A, Bumann D, Mislin GL, Schalk IJ.

Environ Microbiol. 2016 Mar;18(3):819-32. doi: 10.1111/1462-2920.13199. Epub 2016 Feb 5.

PMID:
26718479
6.

The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis.

Oves-Costales D, Kadi N, Challis GL.

Chem Commun (Camb). 2009 Nov 21;(43):6530-41. doi: 10.1039/b913092f. Epub 2009 Sep 14. Review.

PMID:
19865642
8.

A genetic locus required for iron acquisition in Mycobacterium tuberculosis.

Krithika R, Marathe U, Saxena P, Ansari MZ, Mohanty D, Gokhale RS.

Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2069-74. Epub 2006 Feb 3.

9.

The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore-free iron ligand.

Wyckoff EE, Payne SM.

Mol Microbiol. 2011 Sep;81(6):1446-58. doi: 10.1111/j.1365-2958.2011.07775.x. Epub 2011 Aug 4.

10.

Catechol Siderophore Transport by Vibrio cholerae.

Wyckoff EE, Allred BE, Raymond KN, Payne SM.

J Bacteriol. 2015 Sep;197(17):2840-9. doi: 10.1128/JB.00417-15. Epub 2015 Jun 22.

12.

Identification of siderophore biosynthesis genes essential for growth of Aeromonas salmonicida under iron limitation conditions.

Najimi M, Lemos ML, Osorio CR.

Appl Environ Microbiol. 2008 Apr;74(8):2341-8. doi: 10.1128/AEM.02728-07. Epub 2008 Feb 22.

13.
14.

Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin.

Nas MY, Cianciotto NP.

Microbiology. 2017 Nov;163(11):1590-1603. doi: 10.1099/mic.0.000545. Epub 2017 Oct 6.

15.

Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp. ATCC 700974.

Patzer SI, Braun V.

J Bacteriol. 2010 Jan;192(2):426-35. doi: 10.1128/JB.01250-09. Epub 2009 Nov 13.

16.

Two Catechol Siderophores, Acinetobactin and Amonabactin, Are Simultaneously Produced by Aeromonas salmonicida subsp. salmonicida Sharing Part of the Biosynthetic Pathway.

Balado M, Souto A, Vences A, Careaga VP, Valderrama K, Segade Y, Rodríguez J, Osorio CR, Jiménez C, Lemos ML.

ACS Chem Biol. 2015 Dec 18;10(12):2850-60. doi: 10.1021/acschembio.5b00624. Epub 2015 Oct 22.

PMID:
26463084
17.

Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis.

Bushley KE, Ripoll DR, Turgeon BG.

BMC Evol Biol. 2008 Dec 3;8:328. doi: 10.1186/1471-2148-8-328.

18.

Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis.

Gehring AM, DeMoll E, Fetherston JD, Mori I, Mayhew GF, Blattner FR, Walsh CT, Perry RD.

Chem Biol. 1998 Oct;5(10):573-86.

19.

Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases.

Carroll CS, Moore MM.

Crit Rev Biochem Mol Biol. 2018 Aug;53(4):356-381. doi: 10.1080/10409238.2018.1476449. Epub 2018 Jun 4. Review.

PMID:
29863423
20.

Nonribosomal peptides for iron acquisition: pyochelin biosynthesis as a case study.

Ronnebaum TA, Lamb AL.

Curr Opin Struct Biol. 2018 Dec;53:1-11. doi: 10.1016/j.sbi.2018.01.015. Epub 2018 Feb 20. Review.

PMID:
29455106

Supplemental Content

Support Center