Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 356

1.

Control of photoluminescence properties of CdSe nanocrystals in growth.

Qu L, Peng X.

J Am Chem Soc. 2002 Mar 6;124(9):2049-55.

PMID:
11866620
2.

Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction.

Li JJ, Wang YA, Guo W, Keay JC, Mishima TD, Johnson MB, Peng X.

J Am Chem Soc. 2003 Oct 15;125(41):12567-75.

PMID:
14531702
3.

Effect of reaction media on the growth and photoluminescence of colloidal CdSe nanocrystals.

Yu K, Singh S, Patrito N, Chu V.

Langmuir. 2004 Dec 7;20(25):11161-8.

PMID:
15568871
4.

A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis.

Deng Z, Cao L, Tang F, Zou B.

J Phys Chem B. 2005 Sep 8;109(35):16671-5.

PMID:
16853121
5.

Composition-tunable Zn(x)Cd(1-x)Se nanocrystals with high luminescence and stability.

Zhong X, Han M, Dong Z, White TJ, Knoll W.

J Am Chem Soc. 2003 Jul 16;125(28):8589-94.

PMID:
12848567
6.
7.

Water-soluble CdSe and CdSe/CdS nanocrystals: a greener synthetic route.

Deng DW, Yu JS, Pan Y.

J Colloid Interface Sci. 2006 Jul 1;299(1):225-32. Epub 2006 Feb 21.

PMID:
16494893
8.

Synthesis and optical properties of L-cysteine hydrochloride-stabilized CdSe nanocrystals in a new alkali system.

Feng B, Teng F, Tang AW, Wang Y, Hou YB, Wang YS.

J Nanosci Nanotechnol. 2008 Mar;8(3):1178-82.

PMID:
18468120
9.

Quantum mazes: luminescent labyrinthine semiconductor nanocrystals having a narrow emission spectrum.

De Paoli Lacerda SH, Douglas JF, Hudson SD, Roy M, Johnson JM, Becker ML, Karim A.

ACS Nano. 2007 Nov;1(4):337-47. doi: 10.1021/nn700111c.

PMID:
19206685
10.
11.

Synthesis and optical properties of thiol-stabilized PbS nanocrystals.

Zhao X, Gorelikov I, Musikhin S, Cauchi S, Sukhovatkin V, Sargent EH, Kumacheva E.

Langmuir. 2005 Feb 1;21(3):1086-90.

PMID:
15667194
12.

Synthesis of CdSe nanocrystals in a noncoordinating solvent: effect of reaction temperature on size and optical properties.

Nag A, Sapra S, Chakraborty S, Basu S, Sarma DD.

J Nanosci Nanotechnol. 2007 Jun;7(6):1965-8.

PMID:
17654973
13.

Adsorption and binding of capping molecules for highly luminescent CdSe nanocrystals--DFT simulation studies.

Chou HL, Tseng CH, Pillai KC, Hwang BJ, Chen LY.

Nanoscale. 2010 Dec;2(12):2679-84. doi: 10.1039/c0nr00569j. Epub 2010 Oct 19.

PMID:
20957279
14.

A new two-phase route to high-quality CdS nanocrystals.

Wang Q, Pan D, Jiang S, Ji X, An L, Jiang B.

Chemistry. 2005 Jun 20;11(13):3843-8.

PMID:
15827983
15.
16.

Investigation of the internal heterostructure of highly luminescent quantum dot-quantum well nanocrystals.

Santra PK, Viswanatha R, Daniels SM, Pickett NL, Smith JM, O'Brien P, Sarma DD.

J Am Chem Soc. 2009 Jan 21;131(2):470-7. doi: 10.1021/ja8033075.

PMID:
19140789
17.

Alloyed Zn(x)Cd(1-x)S nanocrystals with highly narrow luminescence spectral width.

Zhong X, Feng Y, Knoll W, Han M.

J Am Chem Soc. 2003 Nov 5;125(44):13559-63.

PMID:
14583053
18.
19.

The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix.

Dushkin CD, Saita S, Yoshie K, Yamaguchi Y.

Adv Colloid Interface Sci. 2000 Dec 11;88(1-2):37-78.

PMID:
11185702
20.

Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.

Yang Y, Chen O, Angerhofer A, Cao YC.

Chemistry. 2009;15(13):3186-97. doi: 10.1002/chem.200802295.

PMID:
19206119

Supplemental Content

Support Center