Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Gender-specific K(+)-channel contribution to adenosine-induced relaxation in coronary arterioles.

Heaps CL, Bowles DK.

J Appl Physiol (1985). 2002 Feb;92(2):550-8.

PMID:
11796663
3.

Hypercholesterolemia abolishes voltage-dependent K+ channel contribution to adenosine-mediated relaxation in porcine coronary arterioles.

Heaps CL, Tharp DL, Bowles DK.

Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H568-76. Epub 2004 Sep 30.

PMID:
15458946
4.

Effects of exercise training and hypercholesterolemia on adenosine activation of voltage-dependent K+ channels in coronary arterioles.

Heaps CL, Jeffery EC, Laine GA, Price EM, Bowles DK.

J Appl Physiol (1985). 2008 Dec;105(6):1761-71. doi: 10.1152/japplphysiol.90958.2008. Epub 2008 Oct 2.

5.

Role of NO and K(+)(ATP) channels in adenosine-induced vasodilation on in vivo canine subendocardial arterioles.

Yada T, Hiramatsu O, Tachibana H, Toyota E, Kajiya F.

Am J Physiol. 1999 Nov;277(5 Pt 2):H1931-9.

PMID:
10564149
6.

H2O2-induced redox-sensitive coronary vasodilation is mediated by 4-aminopyridine-sensitive K+ channels.

Rogers PA, Dick GM, Knudson JD, Focardi M, Bratz IN, Swafford AN Jr, Saitoh S, Tune JD, Chilian WM.

Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2473-82. Epub 2006 Jun 2.

PMID:
16751285
7.

Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery.

Pataricza J, Krassói I, Höhn J, Kun A, Papp JG.

Cardiovasc Drugs Ther. 2003 Mar;17(2):115-21.

PMID:
12975592
8.
9.
10.

Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca(2+)-activated K+ channels.

Cabell F, Weiss DS, Price JM.

Am J Physiol. 1994 Oct;267(4 Pt 2):H1455-60.

PMID:
7943391
11.

Requisite roles of A2A receptors, nitric oxide, and KATP channels in retinal arteriolar dilation in response to adenosine.

Hein TW, Yuan Z, Rosa RH Jr, Kuo L.

Invest Ophthalmol Vis Sci. 2005 Jun;46(6):2113-9.

PMID:
15914631
12.
13.

Flow-induced dilation of human coronary arterioles: important role of Ca(2+)-activated K(+) channels.

Miura H, Wachtel RE, Liu Y, Loberiza FR Jr, Saito T, Miura M, Gutterman DD.

Circulation. 2001 Apr 17;103(15):1992-8.

15.

Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome.

Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, Sturek M.

Am J Physiol Heart Circ Physiol. 2008 Jun;294(6):H2489-96. doi: 10.1152/ajpheart.01191.2007. Epub 2008 Apr 4.

PMID:
18390821
16.

Exercise training increases K+-channel contribution to regulation of coronary arterial tone.

Bowles DK, Laughlin MH, Sturek M.

J Appl Physiol (1985). 1998 Apr;84(4):1225-33.

PMID:
9516188
17.
18.
19.

Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease.

Sato A, Terata K, Miura H, Toyama K, Loberiza FR Jr, Hatoum OA, Saito T, Sakuma I, Gutterman DD.

Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1633-40.

PMID:
15772334
20.

Role of K+ channels in EDHF-dependent relaxation induced by acetylcholine in canine coronary artery.

Nakashima Y, Toki Y, Fukami Y, Hibino M, Okumura K, Ito T.

Heart Vessels. 1997;12(6):287-93.

PMID:
9860196

Supplemental Content

Support Center