Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Processing of proSAAS in neuroendocrine cell lines.

Mzhavia N, Qian Y, Feng Y, Che FY, Devi LA, Fricker LD.

Biochem J. 2002 Jan 1;361(Pt 1):67-76.

2.

Tissue distribution and processing of proSAAS by proprotein convertases.

Sayah M, Fortenberry Y, Cameron A, Lindberg I.

J Neurochem. 2001 Mar;76(6):1833-41.

3.

Functional characterization of ProSAAS: similarities and differences with 7B2.

Fortenberry Y, Hwang JR, Apletalina EV, Lindberg I.

J Biol Chem. 2002 Feb 15;277(7):5175-86. Epub 2001 Nov 21.

4.
5.

Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing.

Fricker LD, McKinzie AA, Sun J, Curran E, Qian Y, Yan L, Patterson SD, Courchesne PL, Richards B, Levin N, Mzhavia N, Devi LA, Douglass J.

J Neurosci. 2000 Jan 15;20(2):639-48.

6.

Coexpression of proprotein convertase SPC3 and the neuroendocrine precursor proSAAS.

Lanoue E, Day R.

Endocrinology. 2001 Sep;142(9):4141-9.

PMID:
11517193
7.

Distribution of proSAAS-derived peptides in rat neuroendocrine tissues.

Feng Y, Reznik SE, Fricker LD.

Neuroscience. 2001;105(2):469-78.

PMID:
11672612
8.

ProSAAS processing in mouse brain and pituitary.

Mzhavia N, Berman Y, Che FY, Fricker LD, Devi LA.

J Biol Chem. 2001 Mar 2;276(9):6207-13. Epub 2000 Nov 27.

9.

The C-terminal region of proSAAS is a potent inhibitor of prohormone convertase 1.

Qian Y, Devi LA, Mzhavia N, Munzer S, Seidah NG, Fricker LD.

J Biol Chem. 2000 Aug 4;275(31):23596-601.

10.

Inhibitory specificity and potency of proSAAS-derived peptides toward proprotein convertase 1.

Basak A, Koch P, Dupelle M, Fricker LD, Devi LA, Chrétien M, Seidah NG.

J Biol Chem. 2001 Aug 31;276(35):32720-8. Epub 2001 Jul 2.

11.

ProSAAS-derived peptides are differentially processed and sorted in mouse brain and AtT-20 cells.

Wardman JH, Fricker LD.

PLoS One. 2014 Aug 22;9(8):e104232. doi: 10.1371/journal.pone.0104232. eCollection 2014.

12.

Lipopolysaccharide mediated regulation of neuroendocrine associated proprotein convertases and neuropeptide precursor processing in the rat spleen.

Lansac G, Dong W, Dubois CM, Benlarbi N, Afonso C, Fournier I, Salzet M, Day R.

J Neuroimmunol. 2006 Feb;171(1-2):57-71. Epub 2005 Dec 5.

13.

Role of prohormone convertases in pro-neuropeptide Y processing: coexpression and in vitro kinetic investigations.

Brakch N, Rist B, Beck-Sickinger AG, Goenaga J, Wittek R, Bürger E, Brunner HR, Grouzmann E.

Biochemistry. 1997 Dec 23;36(51):16309-20.

PMID:
9405066
14.

ProSAAS and prohormone convertase 1 are broadly expressed during mouse development.

Feng Y, Reznik SE, Fricker LD.

Brain Res Gene Expr Patterns. 2002 Jan;1(2):135-40.

PMID:
15018810
15.

Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3.

Dey A, Xhu X, Carroll R, Turck CW, Stein J, Steiner DF.

J Biol Chem. 2003 Apr 25;278(17):15007-14. Epub 2003 Feb 12.

16.

Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway.

Eskeland NL, Zhou A, Dinh TQ, Wu H, Parmer RJ, Mains RE, O'Connor DT.

J Clin Invest. 1996 Jul 1;98(1):148-56.

17.

Embryonic gene expression and pro-protein processing of proSAAS during rodent development.

Morgan DJ, Mzhavia N, Peng B, Pan H, Devi LA, Pintar JE.

J Neurochem. 2005 Jun;93(6):1454-62.

18.

Isolation and characterization of VGF peptides in rat brain. Role of PC1/3 and PC2 in the maturation of VGF precursor.

Trani E, Giorgi A, Canu N, Amadoro G, Rinaldi AM, Halban PA, Ferri GL, Possenti R, Schininà ME, Levi A.

J Neurochem. 2002 May;81(3):565-74.

20.

Proglucagon processing in an islet cell line: effects of PC1 overexpression and PC2 depletion.

Dhanvantari S, Brubaker PL.

Endocrinology. 1998 Apr;139(4):1630-7.

PMID:
9528943

Supplemental Content

Support Center